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Abstract
Spatial omics technologies, including highly multiplexed histologic protein assays, nucleic acid abundance
and/or sequence mapping, and spatial epigenetics assays, offer powerful tools for interrogating the complex
biology of human tissues. These technologies have been broadly applied in basic and translational research,
which presages deployment in clinical settings as well. In this article, we discuss spatial omics technologies
with an emphasis on retrieval of disease-related information in single samples, with potential clinical applica-
tions in specialties such as oncology and immunology, and in the development of personalized treatment.
Capable of localizing detailed molecular information within histologic structures, spatial omics technologies
provide both cell-intrinsic information and microenvironmental interaction context. This will allow more pre-
cise diagnostic and prognostic classifications and more accurate predictions about treatment responses to
be made. While technical and financial challenges to widespread deployment in clinical laboratories remain,
spatial omics technologies are expected to dramatically expand actionable information obtained by human
tissue sampling for pathologic analysis.

T he emergence of spatial omics technologies, which enable
highly multiplexed assays of protein abundance, gene ex-
pression, and/or chromatin state, while preserving infor-

mation about their native locations in tissue, has provided
fresh perspectives on normal biological processes, such as de-
velopment, as well as on pathologic dysfunction.1,2

Spatial omics tools have numerous uses, including in-depth
studies of cell type compositions, transcriptome mapping in di-
verse tissues, and determining microenvironmental influences
among adjacent cells (e.g., paracrine signaling in embryonic de-
velopment).3 Currently, spatial omics technologies serve primar-
ily as tools in investigative biology and in pathway discovery in
human tissue experiments.

While the idea of spatially resolved, multiplexed characteriza-
tion of tissues at cellular or subcellular level resolution is not
new, in recent years the widely available platforms offering spa-
tial omics technologies have expanded substantially. They in-
clude a variety of assays built on new technologies for
examining local genetic expression.4,5

This paper focuses on platforms with cellular or near-cellular
(*1–25 lm) resolution, as these are most readily deployed in
examining lesions in human samples of clinically relevant size.
In many of these platforms, such as High Definition Spatial Tran-
scriptomics, Slide-seq, and Deterministic Barcoding in Tissue
(‘‘DBiT’’), spatially resolved oligonucleotide barcoding is
employed—a unique nucleic acid identifier ligated to molecules
in particular tissue regions to identify gene and protein locale.6–8

Other available methods take advantage of fluorescence
markers, attaching fluorophore tags to nucleic acid sequence
probes or libraries of antibodies applied to tissue sections,
which can then be subjected to multiple rounds of fluorescence
imaging, such as in smFISH, MERFISH, MOSAICA, Xenium, and
Phenocycler assays.9–13

These assays allow for the examination of transcription and
translation-level features (thousands of expressed genes, or
hundreds of proteins), at each of many tissue locations in
situ; in parallel with the biotechnology developments that
have made spatial omics technologies more accessible, new
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computational tools have emerged for analyzing the large,
complex datasets resulting from these assays.14,15 Several of
these tools are open-source and highly accessible on com-
monly used platforms.16

Tissue bioanalytical assays in current clinical practice
Histopathologic assessment by anatomic pathologists, the
main modality for examination of resected or biopsied tis-
sue in the current clinical setting, is driven largely by expert
interpretation of morphology in hematoxylin & eosin (H&E)-
stained tissue sections. Nonetheless, there are well-recognized
limitations on the discriminability of important cell types by
H&E morphology (e.g., fibroblasts).17

Special histological stains and multiplexed protein technolo-
gies such as immunohistochemistry (IHC), immunofluores-
cence, and multiplexed ion beam imaging microscopy (MIBI),
along with Fluorescence In-situ Hybridization (FISH) analysis
and sequencing assays are often used as confirmatory analyses
or additional diagnostic procedures. Protein expression assays
by IHC and nucleic acid detection by FISH, while extremely use-
ful in aiding expert diagnosis, are limited to low complexity
(i.e., a single or few simultaneous targets).

In contrast, assays such as flow cytometry (which allows for
high plex protein detection) and high plex next-generation se-
quencing (NGS) cannot map detected molecular features to lo-
calized areas of tissue, as they rely on dissociating tissue into
suspensions of molecules, cells, or nuclei.

The clinical importance of multiplex tissue imaging is demon-
strated by the current wide adoption of histology-based classifi-
cation and patient-stratification techniques. In diffuse large
B-cell lymphoma, for example, outcomes are markedly different
for tumors arising from different cells of origin (the main sub-
types being germinal center B-cell-like (GCB) with a more favor-
able prognosis and activated B-cell-like (ABC) with a less
favorable prognosis).

While strict cell of origin typing requires gene expression pro-
filing covering 100 gene loci, a number of condensed panels
(i.e., multiplex assessment) of IHC markers have been devised
that show good, but not perfect, concordance (77–87%), with
gene expression profiling for GCB versus ABC subtypes.18,19

Similarly, microsatellite instability in colorectal cancer confers
increased susceptibility to treatment with immunotherapy, but
definite classification into microsatellite stable, low microsatel-
lite unstable, and high microsatellite unstable requires testing
by NGS or multiplex PCR, and thus a panel of four IHC markers
(MLH1, PMS2, MLH2, and MSH6) has been developed, which,
taken together, can act as a surrogate classifier.

Single-cell sequencing, which has yet to be widely adopted in
clinical laboratories, can be used for identification of individual
cells and their states via genetic markers. However, it is possible
for different cell types to express some similar markers under
the influence of the local microenvironment, such as uterine
stroma and epithelium.20

Even when using complex analyses such as graph-based clus-
tering, pseudotime analyses, or density analyses, to determine
higher-order structures such as tumor subclone or immune infil-

trate composition, dissociated single-cell methods do not pro-
vide complete contextual information about the relationships
between important cell subpopulations and acellular features
of tissue lesions.21,22

Advantages of spatial omics technologies
Methods currently in clinical use do not support potentially im-
portant analyses such as localized cell-to-cell interactions and
classification of the local microenvironment of lesions. In the fol-
lowing sections, we discuss how spatial omics technologies
have the potential to support more complex and nuanced diag-
nostics by augmenting existing assays with spatially resolved
molecular data.

Spatial omics technologies allow for simultaneous examina-
tion of many molecular features among physically adjacent
cells, enabling comparisons of these features to neighboring
cell clusters and local tissue elements such as anatomic struc-
ture, extracellular lesions, and lesion architecture.

By examining genetic markers typically used to identify cells
with an added spatial component (i.e., the ability to register cel-
lular locale with respect to underlying tissue histology), a single
assay can result in significantly higher confidence regarding cell
type, inter-cellular interactions, and the local microenvironment
of the tissue.

For example, Lundmark et al. used spatial RNA sequencing to
map immune cell response in inflamed periodontal tissues; im-
mune cell gene expression was found localized around gum ep-
ithelium of periodontitis patients, the typical entrance point for
immune populations into damaged tissues.23 All this informa-
tion can be useful in formulating diagnoses and assessing
other predictive features of lesions, such as the likelihood that
treatment may require damaging vulnerable nearby tissue
(e.g., neural tissue).24

Finally, and most critically, some information clinically rele-
vant to disease processes can only be obtained by examination
of the way in which particular functional subsets of cells are po-
sitioned within an affected tissue. This occurs most frequently in
the interactions between biological systems that operate under
different constraints, such as: a tumor and the immune response
to it; the immunologic milieu in one tissue compartment and
that in another; or a developmentally abnormal population
and its neighboring tissue (i.e., as in dysplasias or hamartoma-
tous growths).25

Detailed characterization of these interfaces may provide im-
portant diagnostic information about overall disease trajectory.

Increased information retrieval from limited tissue
samples
A significant challenge in diagnostic pathology is how to best
utilize limited amounts of resected tissue, particularly small bi-
opsies, in the era of advanced molecular testing. The extraction
of as much useful information as possible from tissue samples is
a major goal of diagnostic tissue sampling procedures. Morpho-
logic, immunophenotypic, and genomic information are all rou-
tinely used in modern practice to establish diagnostic and
ancillary biological parameters of lesions.26,27
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Tissue sampling procedures for diagnosis carry risk. Even in
limited sampling procedures such as transthoracic needle biop-
sies, 25% of procedures result in at least some pneumothorax,
and liver and kidney biopsies carry a small risk of hemor-
rhage.28,29 Many tissue samples are thus limited in size to reduce
risk of harm to the patient.

However, the resulting small size of biopsy samples can pres-
ent challenges for pathologic analysis, particularly when using
techniques that require a larger amount of tissue, such as tradi-
tional RNA sequencing and proteomics.30 Further, accurate di-
agnosis of small cellular clusters or infiltrates within larger
reactive tissue regions remains a persistent challenge in ana-
tomic pathology. NGS has created a powerful diagnostic tool
in these settings, but in many cases, particularly those with lim-
ited tissue available, the correlation between molecular findings
and histomorphology is imprecise.

In many cases, spatial omics technologies can produce data
on thousands of expressed genes and their specific locations
of expression in a single histological slide section from human
samples.8,10 This allows for the determination of the gene ex-
pression profiles of spatially distinct regions within tissue sam-
ples. On many platforms, histomorphology is preserved and
co-registered with molecular data (Fig. 1).

Assignment of complex molecular features to small clusters
of cells in their precise tissue context (e.g., clusters of suspi-
cious cells in the subcapsular space of a lymph node) can pro-
vide crucial diagnostic clues. This also can be useful in
detecting pathologic niches that anticipate malignant transfor-
mation or precede tissue remodeling and dysfunction, such as
stress signatures in myocardium tissue, or fibrotic microenvi-
ronments in the kidney, which offer potential early therapeutic
targets.31,32

FIG. 1. A comparison of histology and NGS methods to spatial omic technologies.
Histomorphology, the primary data type for anatomic pathology diagnosis over the last century and a half, has high spatial resolution and
fidelity with the configuration of tissue in vivo. Immunohistochemistry has added a valuable layer of molecular data, but this is low
complexity. In contrast, NGS-based methods, including single-cell sequencing, offer highly complex data at the cost of dissociation of tissue
with the resulting loss of structure. Spatial omics technologies attempt to retain histomorphology through the process of assaying large
numbers of targets, resulting in high-complexity data registered to the underlying tissue and cellular structure. NGS, next-generation
sequencing.
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In the case of tumors, co-localizing mutations and other mo-
lecular features with morphologically defined cell populations
and other histologic features provides a highly informative
map of tumor invasion and stromal interaction.

Another advantage of spatial omics technologies is that they
enable the analysis of highly multiplexed gene expression
within intact tissue samples (see Fig. 2). This eliminates the
need for tissue dissociation and cell sorting, which can be
time-consuming and may introduce biases or artifacts in the
data, evidenced by the levels of experimental variability in
single-cell assays.33

Spatial omics technologies also enable gene expression anal-
ysis across multiple spatial scales—at the level of a single cell in
some cases, classifications of small areas by cell type occupancy,
at the level of microanatomic structure (i.e., epithelial layers), or
the tissue as a whole. Analyses at all these levels simultaneously
are not currently available in clinical assays and may be particu-
larly useful in gathering important information from limited
amounts of resected tissue.

In addition, the interpretation of some pathological findings
can be subjective and often varies between different observers,
as suggested by studies such as Messerli et al.,34 which found

FIG. 2. Examples of complex spatially resolved information in human tissues as revealed by spatial omics
technologies.
(A) Human optic nerve head with individual transcriptomic data loci, categorized by underlying tissue niche (yellow = nerve; green = septae;
purple = other).
(B) Virtual dissection of distinct tissue structures present in transcriptomic foci, including nerve, septae, and blood vessels using expert
annotation of co-registered histologic image (H&E stain).
(C) UMAP projection of transcriptomic data from optic nerve head (each point represents a single tissue locus), with Louvain cluster identities
of expression profiles in different colors.
(D) Complex, heterogeneous immune cell infiltrate in the tumor microenvironment of non-small cell lung cancer metastasis to the
cerebellum, visualized with a subset of the 48 markers assayed using highly multiplexed immunofluorescence.9 All scale bars = 25 lm.
H&E, hematoxylin & eosin; UMAP, uniform manifold approximation and projection.
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high diagnostic variability for associated tumors in gestational
trophoblastic neoplasia.28 This is particularly true in tissues
with multiple cell types, where pathologists may have differing
opinions on the significance of certain findings or the presence
of abnormal cells.

Even after the use of common ancillary diagnostic techniques
including IHC, diagnostic discrepancies occur.34 The availability
of as much data as possible on the cellular architecture of the
tissue in question and the unique features of each cell type pres-
ent can mitigate interobserver variability. Spatial omics technol-
ogies are, therefore, expected to play a role in ‘‘decluttering’’ an
otherwise diagnostically challenging piece of tissue, improving
cohesion and accuracy between observers.

Spatially resolved highly multiplexed molecular data can also
be integrated with other types of data, such as classical IHC, to
provide a more comprehensive understanding of tissue biology
that may be useful in diagnosing and treating conditions on an
individual basis. Therefore, spatial omics technologies substan-
tially amplify the information available from limited amounts
of tissue and maintain the spatial context of gene expression
patterns within the tissue microenvironment.

Modern histologic practice and integration
with spatial omics technologies
The promise of spatially resolved highly multiplexed information
to provide insight into human disease processes has re-
emphasized the importance of tissue context to deliver true
insights into disease biology. The data generated by these tech-
nologies comprise a skeleton; the assays themselves provide the
relative locations of the analyzed molecules (and thus proxim-
ities to each other).

These molecules exist in and around cells that are situated in
tissue architecture, creating the networks, physiological units,
microenvironments, barriers, and organs that keep us alive
and whose dysfunction corresponds to disease.

This context, which is essentially the traditional histologic de-
scription of health and disease, has been the subject of intense
study since the 17th century, providing an immense body of
knowledge of the changes in cellular identities, cytomorphol-
ogy, and microenvironment that accompany disease initiation
and progression. Deployment of spatial omics technologies pro-
ductively to understand molecular pathways implicated in dis-
ease requires application to tissue in which these structural
elements can be identified and related to disease phenotype.

Thus, close integration with histology is of the utmost impor-
tance when designing and analyzing spatial ‘‘-omics’’ experi-
ments. This requires histopathologic surveying and assessment
of the tissues under study, and the identification of key areas to
which an appropriate spatial omics assay may be applied to
yield insights into pathology.

The advent of large-scale digitization of histologic slides
by whole-slide imaging in the clinical practice provides the
substrate for direct integration with spatial omics data: high-
resolution digital representation of intact tissue stained by tradi-
tional methods.35 Leveraging this will require improvement in
the reliability and accessibility of algorithms to do two things:

(1) Accurately align the highly multiplexed data generated by
a spatial ‘‘-omics’’ experiment with images of the tissue from
which it was derived (i.e., image registration), and (2) Capture
expert and/or automated identification of important locations
and features in tissue and integrate them into the analysis of
the molecular data.

Deep-learning algorithms for histopathological image analy-
sis and computer-assisted diagnosis (CAD) are being increas-
ingly deployed.36 Deep-learning techniques can segment and
quantify vast numbers of tissue features, adding quantitative
descriptions beyond the limitations of human observers. Algo-
rithms such as the weakly supervised survival convolution neu-
ral network (WSS-CNN) have also been tested in clinical trials by
correlating metadata extract from images of H&E stained tissues
with survival data, allowing for increased efficiency, consistency
across larger data sets, and more accurate prognosis.37

The use of deep machine-learning algorithms in improving
basic staining techniques such as H&E itself is likely to be an up-
coming and useful field for diagnostic pathology. Computer-
generated staining on images of unstained tissues can be
particularly useful for ‘‘applying’’ multiple stains to a single
section of tissue. H&E stains can now be performed by deep-
learning algorithms, for example in the formulation of virtual
stains on unstained and previously stained imaged tissue for
prostate cancer tumor diagnosis.38

Registration of such richly quantified histomorphology to spa-
tial omics data via computational techniques thus holds the
promise of extracting a vast amount of clinically relevant data
from tissue samples.

Deconvolving information from integrated biological
systems
All tissues within the human body are composed of different cell
types, and they participate in and are affected by the function of
multiple physiologic systems. The presence of multiple cell
types, particularly from distinct biological systems, can compli-
cate the characterization of diseased tissues and confound the
classification of possible abnormal cells. This can lead to incom-
plete or inaccurate diagnoses, particularly when various cells
within diseased tissue express similar genetic markers.

The immune system is an excellent example of a biological
system with high complexity and dynamic spatial arrange-
ment in tissues. Immune cells themselves can have varying
roles in tumor biology, with some promoting tumor growth
(e.g., some tumor-associated macrophages and myeloid-
derived suppressor cells) and others inhibiting it (i.e., CD8+
and CD4+ T cells).

Even within a given cell lineage, there is a growing apprecia-
tion for functional diversity and plasticity. For example, cytotoxic
CD8+ T cells are an essential component of the adaptive im-
mune response against viral infections and cancers, whereas a
subset of CD8+ T cells may also play an essential role in regulat-
ing immune responses.39

Emerging evidence also has also revealed that certain line-
ages can differ from traditional immune cell phenotypes; for ex-
ample, although T cells are often seen as beneficial components
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of the immune system combating infection and disease, they
have been shown to cause pathogenic inflammatory storms in
COVID-19 patients, and infiltrating regulatory T cells can sup-
press anti-tumor immune activity.40,41 This makes determining
their precise tissue location especially important.42

The interactions among immune cells themselves and be-
tween immune cells and the constituent tissues of other organs
are essential to the maintenance of homeostasis and in the
pathogenesis and trajectory of myriad diseases. While basic his-
tology and IHC can help to identify and partially classify immune
infiltrates in tissue, practical limitations (e.g., the inability to iso-
late sufficient immune cells from a tissue sample for flow cytom-
etry, or the challenging logistics of using multiple assays that
require different preparation and fixation of tissue such as
flow cytometry and IHC) may introduce inaccuracy and bias
into clinical findings.

Spatial omics technologies offer a solution to this dilemma, by
providing highly multiplexed genetic information of both im-
mune infiltrates and their surroundings, localized to a specific
tissue subregion in a small tissue sample (e.g., Fig. 2D).

Congenital structural disorders with disruptions to the organi-
zation of typical tissue structures can also be assessed more fully
using spatial omics technologies. The process of tissue pattern-
ing involves the interaction of multiple germ layers and cell
types that have to interact to generate proper architecture
and function. Focal cortical dysplasia (FCD), for example, is a
common cause of epilepsy characterized by abnormal develop-
ment and migration of cortical neurons.

Features include the formation of heterotopic neurons, bal-
loon cells, and dysmorphic neurons, which are often arranged
in a disorganized and heterogeneous manner within the cortical
tissue.43,44 It can be challenging to definitively identify and local-
ize the epileptogenic zone within affected brain tissue.45 The
heterogeneity of FCD tissue can also lead to variability in seizure
semiology and treatment response, further complicating the
management of this condition.

By using spatial omics technologies to characterize resected
epileptogenic foci in conditions such as FCD, highly detailed
molecular details about these neurons and their surroundings
may yield a more definitive diagnosis and improved classifica-
tion of the complex architecture and interrelationships in FCD
tissue in resected samples.

Personalized tumor diagnostics. Highly individualized can-
cer treatment, in which clinicians tailor therapies to the individ-
ual molecular and genetic characteristics of each patient’s
tumor, has shown promise in improving treatment outcomes
and reducing side effects in a range of cancer types, including
breast, lung, and colorectal cancer.46–50 A functional approach
to personalized cancer treatment is targeting specific aggressive
clone populations within a tumor.

Certain subclones of a tumor can be particularly resistant to
certain therapies, driving tumor growth and leading to metasta-
sis.51 By identifying these aggressive clones through genomic
sequencing and molecular profiling techniques, clinicians can
develop targeted therapies that selectively kill these popula-

tions. While subclonal mutation analysis is possible with NGS
of dissociated tumor tissue, the distinct arrangement and micro-
environmental interactions particular to tumor subclones can-
not be determined.

These features can be discerned by utilizing spatial omics tech-
nology. In glioblastoma, for example, spatially resolved multio-
mics analysis via 10X Visium has revealed spatially distinct
transcriptional programs among subclones that are strongly influ-
enced by features of the local microenvironment.52 Under local
conditions of metabolic or immune stress, subclones show higher
propensity to migrate toward healthy parts of the brain.

Assaying these parameters in a single patient’s resection may
provide valuable information for prognosis and treatment selec-
tion. Associated molecular signatures could then be tracked
over time using bulk sequencing or cell-free tumor DNA analysis
to monitor the clinical trajectory or response to treatment.

Deploying spatial omics technology testing on patient tumor
samples offers the possibility of identifying where particularly
vulnerable elements of the tumor microenvironment (TME)
(such as lymphatic vessels) lie in relation to aggressive clones.
With continued advances in personalized medicine and preci-
sion oncology, the identification and targeting of aggressive
clone populations via spatial omics is a promising strategy for
improving cancer treatment and associated patient outcomes.

In part, the challenge in characterizing tumor heterogeneity
and the degree of synergy between cancerous clones stems
from private mutations and clonal evolution.53,54 Yet, determin-
ing regions of tissue at higher risk for aggressive clone develop-
ment may provide important guidance for the choice of
management.

The ability to localize aggressive clones and their transcripts
in spatial proximity to each other with spatial omics can help
classify these clones and determine high-risk tissue areas for
the aggressive development of cancer, for example, assessing
higher levels of transcription within certain clones displaying in-
creased proliferation rates.

The TME also plays a critical role in the development, progres-
sion, and response to the treatment of many types of can-
cer.55,56 Tumors are composed of many different cell types,
including cancer cells, immune cells, stromal cells, and others.57

Each of these cell types can interact with each other and with
the extracellular matrix in complex ways, leading to a highly het-
erogeneous microenvironment.

The genomic and phenotypic heterogeneity of many tumors
and the resulting complexity in interactions with the stromal en-
vironment and other cells creates a challenge in formulating
precise predictions about overall tumor behavior.58 For exam-
ple, it can be challenging to determine how changes in the ex-
tracellular matrix are affecting invasive tumor cell behavior.59

In addition, the TME can be highly dynamic, with changes in
cellular composition, cytokine, and chemokine production, and
extracellular matrix remodeling occurring over time and in re-
sponse to various stimuli.60 This dynamic nature of the TME
presents a challenge in selecting appropriate treatments, as
therapies that target precise features of the TME may only be ef-
fective at certain phases of tumor development as functional
trajectories diverge among subclones.
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For example, a study by Radtke et al., 2022 used ‘‘Iterative
Bleaching Extends multipleXity’’ (IBEX) to reveal high-B-cell het-
erogeneity in TME niches surrounding Follicular Lymphoma le-
sions, which integrated with single-cell data revealed selective
gene expression for early relapses such as programmed cell
death protein 1 (PD-1), interferon a, and interferon b, thus im-
proving clinical outlook via predictive capability.61

In modeling the evolutionary trajectory of tumor clones and
how they interact with each other and the surrounding tissue,
this information provides a possible avenue for developing per-
sonalized treatment options for patients. This higher-level diag-
nostic information may help determine cancer evolution and
mechanisms of resistance with high specificity for a patient
and help develop a more precise treatment plan.

Immuno-oncology. The immune system plays a crucial role
in tumor development and progression. In many tumor types,
immune cells infiltrate the TME to influence or eliminate harmful
cancer cells.62–66 The function of these immune infiltrates can be
enhanced by therapy (e.g., immune checkpoint inhibition, cyto-
kine therapies, or transfection of immune cells to drive tumor
antigen recognition).67–71

Assessment of baseline and evolving anti-tumor immune re-
sponse is critical for selecting and managing immunomodula-
tory therapies. Currently, the classification of tumor-immune
interactions in clinical oncology is primarily low-dimensional in
nature (as in PD-1/programmed death-ligand 1 [PD-L1] expres-
sion testing by IHC, scored as positive or negative).72 However,
the profile of infiltrating immune cells and their interaction
with tumor biology is much more complex.

There are numerous functional subsets of effector and regula-
tory immune cells, and complex interactions among them, such
as the formation of tertiary lymphoid structures, and dynamic
relationships with tumor and stromal tissue.73 Completely differ-
ent cell types may express similar morphological and molecular
characteristics, and some otherwise similar cell types may ap-
pear heterogeneous.74,75

Accurate identification of specific cell types and states requires
testing for expression of multiple markers beyond the capability
of simple IHC, most commonly tested instead using flow cytom-
etry.18,19 In such dissociated preparations, however, their direct
relationship with neoplastic cells cannot be determined. These
functional subsets are also subject to shifting microenvironmental
influences, which can be assessed using spatial omics.

Namely, the high-plex immunohistological probe Multiple
Iterative Labeling by Antibody Neodeposition (MILAN) has
revealed that CD8+ T-cell activation states can vary depending
on the microenvironment niche circa particular cancer types,
from high activation leading to tumor resection (i.e., melanoma
and lung cancer) to tumor-impartial activation.76 Establishing
the states of the immune milieu present in particular niches of
the TME, and their relationship with subclonal populations re-
quires both the spatial/morphologic and multiplex molecular
data generated by spatial omics technologies.

Detection of specific immune cell infiltrations associated with
cancer, and closely connected spatial distributions of genetic
markers and proteins, is a strong functional advantage of utiliz-

ing spatial omics. Immunohistochemical assays of immune
checkpoint inhibitors such as PD-L1 are predictive for tumor re-
sponse to checkpoint inhibition, and others are being investi-
gated for this purpose (e.g., CTLA4).

Spatial associations between tumor-infiltrating lymphocytes
and tumor and microenvironment structure promise to improve
these predictions. In diffuse large B-cell lymphoma, for example,
TMEs are present with distinct immunologic properties (dendritic
cell-enriched, macrophage-enriched, and immune-deficient), as
revealed by MIBI, and topological Imaging Mass Cytometry assays
have helped to identify subregions of immune expression, such
as PD-L1, PD-1, and TIM-3 tumor cell positivity, that associate
with poor response to immune-checkpoint inhibitors.77,78

Specific higher-order organizational features, as revealed by
MERFISH, of native immune responses to non-small cell lung car-
cinoma, are associated with immunotherapy response, such as
PD-L1 inhibitor therapy.79 There is also predictive value in the
composition of immune cell infiltrates into tissue regions yet
to be involved by tumor, which can help classify and forecast
cancer progression.78

Detection of specific immune responses that have been
linked to clinical outcomes, including T-cell/macrophage coloc-
alization characteristic of a type 1 interferon response and T-cell/
B-cell colocations suggestive of tertiary lymphoid structure for-
mation, has been demonstrated in HER-2 expressing breast car-
cinoma using Ståhl et al.’s barcode-based assay.80,81

Immune landscapes of metastatic brain tumors can also help
to classify the immunologic reaction to the tumor, and thereby
guide the selection of immuno-oncologic therapy. Immunohis-
tochemical techniques have revealed T-cell and macrophage in-
filtrate and extracellular microenvironment differences that
promote an immunosuppressive environment around carcino-
mas metastatic to the brain.82

The specific mediators of this effect in different patients and
tumor types represent personalized therapeutic targets. Spatial
omics technologies have also helped determine how the im-
mune system interacts with tumor cells in squamous cell carci-
noma. As demonstrated by highly multiplexed spatial
fluorescent assays in Tanaka et al., pro-inflammatory cells may
recruit Th1 and IFNw+ CD8 T-cells, whereas immunosuppressive
tumor cells tend to associate with macrophage recruitment.83

Accurately assaying the composition and activation state of
inflammatory infiltrates is a crucial part of therapy selection in
modern oncology. Spatial omics technologies, thus, have the
potential to be highly impactful in the pathologic workup for
a wide variety of cancers.

Autoimmune diseases. Misdirection of immune system at-
tack against normally functioning tissues of the body can lead
to debilitating symptoms. However, diagnosing and classifying
these diseases can be challenging, as they often present with
overlapping symptoms and diagnostic testing results. Autoim-
mune diseases are primarily classified based on clinical pheno-
type, genetic background (i.e., HLA groups), and serology (i.e.,
which antibodies circulate in the serum, including rheumatoid
factor, anti-DNA, ANCA, and myositis-specific autoantibodies).
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However, the direct immunologic effects on tissue, while
readily observed, are often quite challenging to classify on bi-
opsy samples. Further, the pathogenesis of autoimmune dis-
eases is often occult, with unknown specific antigens against
which dysregulated immune attacks are mounted, and un-
known molecular mediators driving the sustained immune ac-
tivation.

This confounds disease classification on the basis of lab-
oratory testing. Spatial transcriptomic assays, however, are
a promising resolution to this dilemma—providing highly
multiplexed information that can help classify both im-
mune populations and their relationships to surrounding
lesional (and normal) tissue, to provide more detailed clas-
sification.

Taking as an example autoimmune disease involving the skin,
including systemic lupus erythematosus, blistering diseases in
the pemphigus family, and psoriasis, spatial omics technologies
can provide for the analysis of gene expression and protein ac-
cumulation patterns in lymphoid infiltrates present in specific
areas of the skin, providing a detailed map of proinflammatory
and regulatory functions.

Pemphigus diseases, including pemphigus vulgaris, pemphigus
foliaceus, and paraneoplastic pemphigus, are all characterized by
blisters resulting from immunoglobulin (IgG) antibody-mediated
keratinocyte acantholysis and may be difficult to differentiate
from both each other and other blistering disorders such as
Grover disease on biopsy.84

While each of these major subtypes of pemphigus are
characterized by the presence of a particular antibody (i.e.,
pemphigus vulgaris is classified as circulating IgG antibodies
against desmoglein-3, whereas pemphigus foliaceous circu-
lates antibodies against desmoglein-1), there is evidence

that these conditions can occur simultaneously in a single
patient, and even change over time, making diagnoses
more complex.84,85

However, using spatial omics, the precise characterization
of the state of immune infiltrates would quickly narrow
down the differential diagnosis, and add valuable information
on pemphigus heterogeneity and evolution within a singular
individual.

In inflammatory diseases of the central nervous system, there
is a significant level of overlap between histologic findings in
conditions with substantially different etiologies and patterns
of evolution (e.g., infectious, autoimmune, and toxic etiologies).
While clinical settings, disease course, radiographic features, and
serologic testing are often sufficient to narrow differential diag-
noses to a serviceable degree for treatment selection, failure to
establish a specific etiology or even disease category occurs in
many of these cases.

Spatial omics technologies can help overcome these chal-
lenges by providing a detailed picture of the molecular changes
occurring within affected tissues. The specific composition of im-
mune subpopulations located in specific niches of brain tissue
(e.g., perivascular space, leptomeninges, neuropil) offers impor-
tant diagnostic clues into disease type and mechanism.4,5,86–88

Further, cytokine expression patterns by neurons, glia, and
endothelial cells diverge among different infectious agents,
and from the patterns observed in autoimmune reactions.89

These factors may all be exploited in spatial omics technology
assays to enhance the classification of immune-mediated reac-
tions in diagnostic samples.

The complexity, mobility, and dynamic nature of immune sys-
tem components make their assessment of target organs chal-
lenging in the clinical setting. This uncertainty underlies much

FIG. 3. Advantages and disadvantages of spatial transcriptomics for practical implementation in clinical practice.
While spatial omics technologies offer the possibility of revealing a degree of clinically useful information from diagnostic tissue sections
beyond that of routinely used assays, there remain a number of practical challenges to their adoption as part of the toolset for pathologic
workup in routine clinical practice.
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FIG. 4. Diagram of a typical workflow in analysis of spatial omics data sets.
(A) Preprocessing steps adapted from single-cell analysis are applied to filter out data from low-quality loci in tissue (due to technical or
biological factors) and normalize across or integrate data from multiple batches.
(B) Typically data are processed in the molecular domain first, without consideration of spatial locations. A large variety of algorithms, also
adapted from single-cell analysis, can be employed to assign cluster identities or other features (such as inferred location along a
developmental trajectory) to each distinct tissue location. These locations may represent groups of cells and extracellular material, single cells,
or subcellular compartments, depending on the spatial resolution of the assay. Agglomerative or community-detection clustering methods,
which do not require assumptions about the shapes of clusters, have been used to successfully separate biologically relevant clusters.
Interpretation of the clusters requires application of labels, usually informed by expression levels in each cluster of identifiable marker genes
associated with known cell lineages or states. Transcriptional modules, that is, patterns of inter-related gene expression, are identified among
the various clusters.
(C) Armed with molecular descriptors of each tissue locus, analysis in the spatial domain can proceed, usually beginning with co-registration
(i.e., alignment) between the measured tissue loci and a histologic image of the tissue. Then, basic visualizations of tissue loci and their
features (e.g., cluster identity or expression level of specific genes) can be generated. Downstream spatial analysis usually begins by testing for
spatially variable genes (i.e., genes that are not distributed evenly throughout the tissue), and excluding evenly distributed genes from further
analysis. This may trigger reclustering the molecular domain. In some cases, the contributions of multiple cells to the observed expression in a
single locus can be computationally dissected through spot deconvolution, improving resolution for some features. Then, spatial patterns
such as edges, gradients, or closed spaces are identified among genes, clusters, or other molecularly defined features, which defines niches.
These niches can then be assessed for their association with underlying tissue structures.
(D) Finally, analysis in the molecular domain (e.g., receptor-ligand interaction inference) and spatial domain (e.g., cell adjacency or niche
proximity assessment) can be combined to infer intercellular signaling pathways implicated in the underlying biological processes.
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of the challenge in interpreting tissue samples for immune-
mediated disease. Spatial omics technology offers an intriguing
solution to this problem, giving detailed information on both
the ‘‘what’’ and ‘‘where’’ of immune responses.

Limitations
Spatial omics technology is a powerful tool for analyzing the distri-
bution of mutational signatures, epigenetic modifications, and gene
and protein expression within tissue samples. Although these tech-
nologies have the potential to revolutionize our understanding of
disease and expand the diagnostic information available in biopsies
from individual patients, there are several challenges to their imple-
mentation in routine clinical use (see Fig. 3).

One of the main limitations of spatial omics technology is the cost
and complexity of the technology. These methods require special-
ized equipment and expertise, which can be expensive and time-
consuming to acquire and maintain. This can make it challenging
to implement these technologies in a clinical setting, where re-
sources and funding for both physical and training resources may
be limited. Widespread implementation will likely require a decrease
in sequencing and reagent costs and improved automation.

Selection of appropriate regions of interest from all available
tissue in which to deploy spatial omics assays (which typically
have working areas limited to 1 cm2 or less) remains dependent
on traditional histologic methods for screening, a step that can
have dramatic effects on sensitivity. In addition, there are less
discrete units (loci) available for analysis in spatial data sets as
compared with single-cell data sets, and therefore the informa-
tion provided by a singular locus in a spatial data-set is in some
ways more influential on the overall conclusions than studies
that use methods such as single-cell RNA-seq.

Consequently, limitations on statistical power may restrict the
amount of reliable information obtained by the assay, particu-
larly for heterogeneous tissues in which functional subsets
and populations of particular cell types can be small. For exam-
ple, in spatial omics data sets, a little over a thousand RNA tran-
scripts or hundreds of proteins are typically the most that are
measurable from each cell. Using several samples may help to
increase this statistical power, for example comparing cell-
types near similar structures (e.g., a particular nerve head, or ves-
sel), but this introduces additional cost.

A general limitation, common to many RNA sequencing
methods, is bias in the complement of transcripts that are am-
plified and thus detectable by these assays. Read length can af-
fect recoverability. Biological considerations can also introduce
bias; for example in cells that hyper-produce a few transcripts
(e.g., plasma cells producing IgG antibody proteins), other
gene products that are more informative about cell state but
are expressed at a lower level may not be amplified adequately.

In addition, the interpretation of spatial omics technology
data can be challenging, particularly in the context of clinical de-
cision making. The complexity of these datasets can make it dif-
ficult to identify the most relevant information and integrate it
into clinical decision-making processes.

This may require specialized expertise in bioinformatics and data
analysis, which may not be available to all clinicians and may take a
significant amount of time. Further, there is currently a lack of stan-

dardized protocols and data analysis pipelines for spatial omics tech-
nologies; for a general outline of the analysis workflow, see Figure 4
as well as a recent methodologic review by Dries et al.90

The complexity of spatial omics technology protocols and lack
of standardized analysis may impede the validation and verifica-
tion required by regulatory agencies before reporting patient
results.91 As specific uses of spatial omics technologies are pro-
spectively evaluated as companion diagnostics in randomized
clinical trials, reliable parameters for clinical use will be established.

Currently, the most practical path to the clinic appears to be in
using spatial omics technologies as a discovery tool for the under-
lying biology of multisystem interaction in disease, uncovering
specific markers of these interactions that can then be imple-
mented with more focused and basic techniques. However, as
the technologies and analyses mature, clinical standards are put
in place, and training becomes more widely available, these as-
says are expected to form a reliable platform for diagnosis.

Conclusion
The integration of spatial omics tools into clinical care has the
potential to modernize the diagnosis of and facilitate better
treatments for numerous diseases. Existing methods do not pro-
vide high-complexity information relative to native tissue envi-
ronments on a cellular or micro-structural level within the
tissue, which can lead to confounding assumptions. Spatial
omics technologies, on the other hand, allow for simultaneous
analysis of large numbers of molecular features within tissue
sections while preserving their spatial information, adding a
much-needed perspective about the cellular microenvironment
and inter-cellular interactions in lesional tissue.

Beyond providing more detailed information, and a compre-
hensive understanding of the molecular landscape of disease at
the tissue level, spatial omics technologies are expected to allow
for the identification of novel biomarkers, the prediction of dis-
ease progression, and the development of personalized thera-
peutic strategies for conditions such as aggressive cancers.

As computational and technological advancements continue to
improve the sensitivity and resolution of spatial omics, this technol-
ogy will become increasingly informative and applicable to a wide
range of clinical settings, making it a promising tool with potential
for enhancing clinical care and improving patient outcomes.
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