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Abstract

Due to commonalities in pathophysiology, age-related macular degeneration represents a uniquely accessible

model to investigate therapies for neurodegenerative diseases, leading us to examine whether pathways of disease

progression are shared across neurodegenerative conditions. Here we use single-nucleus RNA sequencing to

profile lesions from 11 postmortem human retinas with age-related macular degeneration and 6 control retinas

with no history of retinal disease. We create a machine learning pipeline based on recent advances in data

geometry and topology and identify activated glial populations enriched in the early phase of disease. Examining

single-cell data from Alzheimer’s disease and progressive multiple sclerosis with our pipeline, we find a similar

glial activation profile enriched in the early phase of these neurodegenerative diseases. In late-stage age-related

macular degeneration, we identify a microglia-to-astrocyte signaling axis mediated by interleukin-1β which drives

angiogenesis characteristic of disease pathogenesis. We validated this mechanism using in vitro and in vivo

assays in mouse, identifying a possible new therapeutic target for AMD and possibly other neurodegenerative

conditions. Thus, due to shared glial states, the retina provides a potential system for investigating therapeutic

approaches in neurodegenerative diseases.

Introduction

AMD is a neurodegenerative disease of the retina that affects 196 million individuals worldwide and has a

significant impact on patient’s quality of life [1]. Similar to other neurodegenerative diseases of the central

nervous system (CNS), such as Alzheimer’s disease (AD) and progressive multiple sclerosis (MS), AMD can

be categorized into stages. Initially, in the early, ‘dry’ stage of AMD, extracellular amyloid-beta containing

deposits known as drusen accumulate in the retina, leading to the activation of glia [2]. In advanced, ‘neovascular’

AMD, angiogenesis and fibrosis driven by vascular endothelial growth factor (VEGF) cause photoreceptor

and vision loss [3]. In MS and AD, glial dysregulation is associated with neuronal damage and progressive

neurologic impairment [4, 5]. This raises the question of whether pathogenic glia activation states are shared

across neurodegeneration, and whether the human retina can be used as a model for interventions targeting glial

for similar neurodegenerative diseases.

While single-cell transcriptomics has given insight into the cellular perturbations in AD and MS [4–7], a single-

cell transcriptomic analysis of AMD has not been performed. To identify cell types and states enriched across

stages of AMD, we performed massively parallel microfluidics-based single nucleus RNA-sequencing (snRNA-seq)
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to create a single-cell transcriptomic dataset of AMD pathology, comprising 70,973 cells across multiple stages

of disease. In such large data sets, identifying cellular populations that drive disease and could be targeted

for therapeutic benefit remains a challenge with current approaches. This often occurs because pathogenic

populations may be a small subset of a recognized compartment of the tissue. Thus, it can be challenging

to identify such populations among the noise and complexity present in single-cell data. To address this, we

developed a topologically-inspired machine learning suite of tools called Cellular Analysis with Topology and

Condensation Homology (CATCH). At the center of this framework is a pathogenic-population discovery pipeline

whose key component is a method called diffusion condensation [8]. Diffusion condensation identifies groups of

similar cells across scales systematically to discover subpopulations of interest within a data diffusion framework.

In this approach, cells are iteratively pulled towards the weighted average of their neighbors in high dimensional

gene space, slowly eliminating variation. When cells come close to each other, diffusion condensation merges them

together, creating a new cluster. When combined with a single cell differential abundance method MELD [9],

diffusion condensation can identify distinct subpopulations associated with disease progression. This represents

an improvement over clustering tools that partition the data based on metrics of cluster interconnectedness.

Since this approach identifies specific disease-enriched populations, condition-specific signatures can be built

and compared across neurodegenerative conditions, helping build a common understanding of shared disease

mechanisms.

Using the CATCH pipeline, we identified two populations of activated glia, one microglial subset and one

astrocyte subset, enriched in the early phase of dry AMD. These subsets were characterized by signatures of

phagocytosis, lipid metabolism and lysosomal functions. By reapplying our pipeline to AD [4] and MS [5]

single-cell data sets, we identified the same signatures in the early phases of multiple neurodegenerative diseases,

indicating a common mechanism for glial activation in the early phase of neurodegeneration. The microglia and

astrocyte expression signatures were validated in human retinal and brain tissue. In late stage, neovascular AMD,

CATCH identified an inflammasome expression signature in microglia as well as a proangiogenic signature in

astrocytes. Through computational receptor-ligand interaction analysis, we identified a key signaling axis between

microglia-derived IL-1β and pro-angiogenic astrocytes, the driver of neovascularization and photoreceptor loss in

advanced disease in AMD [3]. Through a combination of human induced pluripotent stem cell (iPSC)-derived

astrocyte stimulation assays, in vivo mouse experiments, and analysis of postmortem human AMD retinal

samples, we validated this pro-angiogenic microglial-astrocyte axis mediated by IL-1β in late-stage neovascular

AMD. As inflammasome and glial IL-1β signaling are important in AD and MS [10–12], these pathways represent
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glial molecular signatures shared between neurodegenerative conditions that affect the retina and the brain. This

study offers both a framework for identifying disease-affected cellular populations and disease signatures from

complex single cell data as well as key insights into the shared drivers of neurodegeneration.

Results

CATCH efficiently identifies, characterizes, and compares disease-enriched populations in
complex single-cell transcriptomic data

As parts of the central nervous system (CNS), the retina contains many different functional layers and distinct

strata that are occupied by a highly diverse set of cell types and states (Fig. 1A). Furthermore, as a component

of the CNS, the retina shares features with the brain at the level of cell biology and degenerative pathology (Fig.

1B). Similar to AMD, MS and AD have defined disease phases, each with an early or acute active, and a late

or chronic inactive disease stage [13–15]. To identify pathogenic cellular states enriched in AMD, and relate

them to states found in AD and MS, we performed massively parallel microfluidics-based snRNA-seq to profile

lesions from the macula of 11 retinas with varying degrees of AMD pathology and 6 control samples, creating a

single-cell view of AMD pathology. We then applied a pipeline, CATCH, to parse this dataset into meaningful

groupings of cell-types and states to identify pathogenic mechanisms of disease which may be shared across

neurodegenerative conditions. We used snRNA-seq for our analysis, which has been shown to perform well for

sensitivity and cell-type classification as compared to scRNA-seq [16]. snRNA-seq has the added advantages

that it minimizes gene expression changes resulting from tissue dissociation as well as minimizes challenges in

dissociation for tissues such as the retina and brain

Cells can exist in various transcriptional states, which naturally fall into a hierarchy or organization. Within

this hierarchy, cells of a more similar functional niche, for instance microglia and astrocytes, are more closely

related to one another than cells of a more disparate niche, for instance microglia and endothelial cells. Learning

this hierarchy from data is important to the development of a systematic understanding of biological function

and can provide insight into mechanisms of disease pathogenesis. As cell types may be differentially affected by

disease, the simultaneous identification and characterization of abundant classes of cells at coarse granularity as

well as rare cell types or states at fine granularity provides a comprehensive framework for defining, modeling, and

understanding specific cellular pathways in disease. While biological data has structure at many different levels of

granularity, most clustering methods offer one or just a few levels of granularity. These few levels of granularity

can create inaccurate identifications of disease-associated cellular states. To address this, we developed CATCH,
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a framework that combines the principles of data manifold geometry with computational topology to create

a better understanding of cellular states across granularities. While the core component of CATCH, diffusion

condensation [8], and its mathematical properties [17] have been established and used to identify multigranular

structure in biomedical datasets [18], it has not been applied to single cell transcriptomic data. Here, we adapted

and built a pipeline around diffusion condensation to systematically sweep through all possible granularities of

the cellular hierarchy to identify pathogenic populations and infer mechanisms of neurodegeneration.

To learn the cellular hierarchy from complex single cell transcriptomic data, we adapted diffusion condensation

to efficiently move cells towards their most similar neighbors in terms of their transcriptomic profile across

successive iterations. When cells collapse into one another, diffusion condensation merges them together, thereby

clustering them at a specific level of granularity (Fig. 1C). By slowly condensing and then merging similar cells,

diffusion condensation effectively learns how cells relate to one another over hundreds of levels of granularity.

Since diffusion condensation does not force cells to merge at any given iteration, as done by other hierarchical

clustering approaches, the length of time a cell, or cluster of merged cells, remains persistent denotes not only

their transcriptomic interrelatedness but also their uniqueness from other cells. Cells that take only a few

iterations to merge are very similar to one another, while cells that take a significant number of iterations to

merge are more different in their overall transcriptomic profile. This approach is fundamentally separate from

popular community detection clustering methods based metrics such as modularity and silhouette score, which

optimize cluster labels based on network interconnectedness. Diffusion condensation is a coarse graining approach

which slowly merges similar populations together across scales. This feature of the algorithm allows us to perform

downstream analysis and identify populations enriched in disease states.

The CATCH framework utilizes the persistence characteristic of diffusion condensation to learn and analyze

the cellular hierarchy to identify pathogenic transcriptomic states and to create robust signatures of disease from

single cell data. The cellular hierarchy is visualized to identify the hierarchical and persistence structure of the

data (Fig. 1D-i). Meaningful granularities of the cellular hierarchy are identified through topological activity

analysis, an analysis that identifies highly persistent and stable granularities for downstream characterization

(Fig. 1D-ii). With this analysis, we identify clusters that isolate cells found disproportionately in pathogenic or

healthy samples using the single cell enrichment analysis method MELD [9] (Fig. 1D-iii). Finally, we create rich

signatures of disease by identifying differentially expressed genes in pathogenic populations of cells using a fast

modification to Earth Mover’s Distance that leverages the cellular hierarchy (Fig. 1D-iv).

For additional details on each component of the CATCH pipeline, including the adaptions to diffusion
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condensation, visualization of the cellular hierarchy, topological activity analysis and our implementation of

differential expression analysis, see methods.

Comparison to other clustering algorithms on synthetic and real single cell data

We benchmarked our CATCH approach against existing clustering strategies applied to single cell data. Using a

combination of 40 synthetic single cell datasets as well as real single cell and flow cytometry data, we compared

the clustering performance of our adapted implementation of diffusion condensation against Louvain and Leiden,

multigranular clustering techniques often applied to single cell data in packages in Monocle 3, as well as Seurat’s

Shared Nearest Neighbors clustering algorithm and FlowSOM, state-of-art methods for clustering single-cell

transcriptomic and flow cytometry data respectively.

Splatter is a simulator of realistic single cell data where ground truth cluster labels are known [19]. Using

these ground truth labels, we generated increasingly noisy single cell datasets with two different types of biological

noise: variation and drop out (Supplementary Fig. 1A). With each of these datasets, we follow the CATCH

framework: first we compute and visualize the condensation homology (Supplementary Fig. 1B) before

performing topological activity analysis to identify the top four most persistent granularities (Supplementary

Fig. 1C) and then finally computing adjusted rand index, a common measure for determining clustering

accuracy against a set of ground truth cluster labels (Supplementary Fig. 1D), keeping the highest score from our

comparisons. Intriguingly, the most persistent population (iv), nearly always had the highest adjusted rand index

score. Using this comparison approach we compared diffusion condensation to Louvain, Leiden, and Seurat’s

Shared Nearest Neighbors clustering algorithms across 40 synthetic single cell datasets. For Louvain and leiden

of the comparison approach, four different resolutions of clusters were computed and compared, keeping only

the comparison which produced the highest adjusted rand index. Across both increasing levels of drop out and

increasing amounts of variation, CATCH performed better than Louvain, Leiden, and Seurat’s Shared Nearest

Neighbors clustering algorithms across 10 different simulations. As noise increased to 0.7 and 0.9 drop out and

0.3 and 0.4 variation, CATCH outperformed other approaches in a statistically significant manner (p < 0.05,

ANOVA with post-hoc two-sided Student’s t-tests with multiple comparisons correction) (Supplementary Fig.

1E).

Next, we compared CATCH against Louvain and Leiden clustering approaches on real single cell data where

multigranular clusters had been identified by an biological expert [20, 21]. First, we analyzed real single cell

transcriptomic data generated from a developing zebrafish with known cell type cluster ground truths [20].
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We organized these cluster labels into multigranular cluster labels by first aggregating 18 cell types found in

four tissue types before aggregating them into three germ layers. In this manner, we produced ground truth

cluster labels across granularities. We then compared the top four most persistent CATCH granularities against

multigranular clusters computed using Louvain and Leiden, again tuning the resolution parameter to produce

ten different cluster labels. At all granularities of ground truth cluster labels, CATCH out performed Louvain

and Leiden despite more granularities being computed for the comparison approaches (Supplementary Fig. 3B).

Finally, as flow cytometry gating analysis has long been held as the gold standard for cell type identification

and comparison, we compared CATCH to other clustering approaches on flow cytometry data. Using 1.3 million

cells generated from 30 patients, we compared the performance of CATCH to louvain, leiden and the flow

cytometry clustering gold-standard FlowSOM [21]. Across all 30 comparisons, CATCH significantly outperformed

other comparisons in a statistically significant way (two-sided t-test between CATCH and each of the other

clustering approaches, p-value<.01) (Supplementary Fig. 3A). All of these comparisons establish that CATCH

identifies known populations of cells in synthetic and real signal cell data better than established techniques,

particularly when there is a high degree of biological noise and variation. Furthermore, CATCH computes a

complete hierarchy of cellular states when identifying populations, allowing for subclustering groups of cells

rapidly to identify activation states of interest. These subpopulation of cells are a direct subclustering of the

coarser grain cluster of interest, allowing for comparison of cellular activation states. While one can repeatedly

change parameters of other techniques to acquire finer or coarser grain clusters, these clusterings would be

disconnected from one another, meaning a complete hierarchy is not captured and cellular groups across runs

can shift dramatically. CATCH solves this problem by identifying clusterings across granularities within a single

framework.

To further validate the computational analysis, we perform ablation studies on each component of the

CATCH pipeline (Supplementary Fig. 2). Finally, we show the ability of this pipeline to identify rare cell types

(Supplementary Fig. 5) and signatures of disease populations in real single cell data (Supplementary Fig. 10).

For an overview of computational analysis and additional comparisons, see methods.

Single-nucleus RNA-seq analysis of the macula in human individuals with AMD pathology

We applied CATCH to the AMD snRNA-seq dataset to identify the major cell types present in the control

and AMD samples. We performed topological activity analysis and identified three granularities of the cellular

hierarchy for downstream analysis (granularities with low activity and high persistence). We visualized the
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snRNA-seq dataset using PHATE and the CATCH-defined clusters at the coarsest two identified granularities

(Fig. 2A). When visualizing the third granularity, we observed a number of clusters, which we categorized as

cell types based on the expression of previously established cell type specific marker genes [22] (Supplementary

Fig. 4A) (see Methods). Using this approach, we identified neuronal cell types, including retinal ganglion

cells, horizontal cells, bipolar cells, rod photoreceptors, cone photoreceptors, and amacrine cells, as well as

rare non-neuronal cell types, including microglia, astrocytes, Müller glia, and vascular cells (Fig. 2B-C). To

determine if these populations could be found with established approaches, we applied Louvain [23] clustering to

the AMD single cell data. Louvain revealed 22 populations at coarse granularity, and 40 populations at fine

granularity (Supplementary Fig. 5A-B). Across both resolutions, however, rare innate immune cell types such

as microglia, astrocytes and Müller glia, were not identified with the Louvain method, with markers specific

for these cell types not localizing to any one cluster. Finally, to demonstrate the ability of CATCH to identify

meaningful populations of cells across granularities, we further explored subtypes of bipolar cells, a diverse set

of interneurons that transmits signals from rod and cone photoreceptors to retinal ganglion cells [24–26]. By

analyzing a coarse granularity of the bipolar cells, we identified the first two major subtypes, ON-center and

OFF-center (Supplementary Fig. 4B). By analyzing a finer granularity, we identified all 12 major subtypes of

cells based on the expression of cell subtype specific marker genes (Supplementary Fig. 4C-E).

To identify cell types implicated in AMD pathogenesis in an unbiased manner, we applied condensation-based

differential expression analysis to the CATCH-identified cell types. By comparing the cells that originated

from retinas with either dry or neovascular AMD to the cells from control retinas, we identified differentially

expressed genes using Earth Mover’s Distance within each cell type (set FDR corrected p-value < .1 across all

comparisons) [27]. By analyzing the number of differentially expressed genes across all cell types, we found that

vascular cells, microglia, and astrocytes had the greatest number of differentially expressed genes across stages

of AMD compared to control samples (Fig. 2D). Furthermore, we performed abundance analysis to identify

if certain cell types were significantly more enriched in either dry or neovascular AMD. This analysis revealed

a statistically significant increase in the proportion of microglia and astrocyte nuclei from donors with both

dry and neovascular AMD compared to control samples (two-sided multinomial test, p-value < .01) (Fig. 2E).

Furthermore, there was a statistically significant enrichment of vascular cells in neovascular AMD, highlighting

the importance of vascular cells in the development of pathological angiogenesis present at that stage of disease

(two-sided multinomial test, p-value < .01). There was a relative decrease in abundance of both rod and cone

photoreceptors in advanced neovascular AMD, consistent with the known loss of photoreceptors in the advanced
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stage of disease (two-sided multinomial test, p-value < .01)(Fig. 2E). These findings suggest that non-neuronal

cell types including microglia, astrocytes, and vascular cells are important cell types in AMD pathogenesis, with

not only the most transcriptional alterations but also changes in abundance during AMD progression.

Microglial activation signature identified in dry AMD is shared across the early phase of
multiple neurodegenerative diseases

While microglia activation states and their dynamics have been identified in mouse models of AD [7] and related

expression states found in humans [28], it is not well understood to what extent these states and dynamics are

shared across human neurodegenerative diseases. The study of microglia in the CNS has been difficult due

to their rarity, requiring focused enrichment strategies [7, 28]. With the ability of CATCH to sweep across all

hierarchies of clusters, we can identify subpopulations of rare cell types at fine granularity to perform a rigorous

and in-depth analysis of cellular states. To identify microglial subpopulations enriched in specific phases of AMD

and build transcriptomic signatures of disease, we identified CATCH granularities that isolated high MELD

likelihood scores computed for control, dry, and neovascular AMD conditions. We computed MELD likelihood

scores for each condition on all microglia in AMD (Fig. 3A). Next, we identified a granularity highlighted

by topological activity analysis that partitioned regions of high disease likelihood from regions of low disease

likelihood (see Methods). With this approach, we identified three clusters, each enriched for a different condition:

a cluster enriched for cells from control samples, a cluster enriched for cells from early, dry AMD samples, and a

cluster enriched for cells from late-stage, neovascular AMD samples (Fig. 3A).

To identify signatures of AMD present in microglia during the early stage of dry disease pathogenesis, a phase

in which microglia have been previously implicated [2], we performed differential expression analysis between

control-enriched and the dry AMD-enriched clusters. Analyzing the top most differentially expressed genes

(FDR corrected p-value < .1) between these subpopulations, a clear activation signature appeared in the early,

dry AMD-enriched cluster, including APOE, TYROBP, and SPP1 (Fig. 3D), genes known to play a role in

neurodegeneration [7]. The association of TYROBP and APOE were validated on sections of human retinal

macula by simultaneous immunofluorescence for IBA1, a microglia-associated gene, and in situ hybridization for

TYROBP and APOE. On sections of human retinal macula, IBA1-positive cells from patients with dry AMD

showed enrichment relative to controls for gene transcripts from TYROBP and APOE, indicating polarization of

a subset of microglia towards the neurodegenerative microglial phenotype in early disease (Fig. 3G). Increased

expression of TYROBP and APOE in microglia was also identified using in situ hybridization on lesions from
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human brain tissue with early stage AD and early progressive MS compared with controls (Supplementary Fig.

7C).

Due to the similarity between this activation state and a previously defined disease-associated microglial state

described in mice [7,29], we performed a comprehensive analysis of microglial states in two other neurodegenerative

diseases, AD and progressive MS. Applying the CATCH approach to snRNA-seq data from AD [4] and MS [5],

we identified all major cell types based on the expression of cell type specific marker genes (Supplementary

Fig. 6A-D). As in AMD, enrichment analysis revealed that microglia were significantly enriched in AD and MS

when compared to control brain tissue (Supplementary Fig. 6E-F). Similar to our analysis of AMD identifying

disease-phase specific transcriptomic states, we applied MELD and topological activity analysis to microglia in

the AD and MS datasets and identified three clusters of microglia in each disease: a cluster enriched for cells

from control brain tissue; a cluster enriched for cells from early-stage AD tissue or acute active MS lesions; and

a cluster enriched for cells from late stage AD tissue or chronic inactive MS lesions (Fig. 3B,C). Differential

expression analysis between the control-enriched and the early disease-enriched clusters yielded a common shared

activation profile in all three diseases when analyzing the top differentially expressed genes (Fig. 3D, middle and

right panels) (FDR corrected p-value < .1)).

To understand the early disease enriched microglial populations, we visualized the microglial activation

signature (CD74, SPP1, VIM, FTL, B2M ) (APOE, TYROBP, CTSB) (C1QB and C1QC ) as well a homeostatic

signature (P2RY12, P2RY13, and OLFML3 ) on control-enriched and early disease-enriched clusters from

neurodegenerative diseases (Fig. 3E). A clear divergence is seen between the expression pattern of the homeostatic

signature in control-enriched populations and early disease-enriched populations across conditions. With higher

expression of activation genes and lower expression of homeostatic genes, the early activated population of

microglia display a divergent polarization state. We built a composite microglial activation signature and mapped

it onto the clusters along with a previously described disease-associated microglia signature found in an AD

mouse model [7]. The early stage of neurodegenerative disease-enriched clusters displayed higher expression of

both signatures compared with the control-enriched clusters (Fig. 3F with expression values ranging from 5 to

25 for our activation signature and 7 to 26 for DAM signature).

This shared neurodegenerative microglial phenotype across AMD, MS, and AD involves upregulation of

multiple genes implicated in studies of neurodegenerative disease risk. These include APOE, a key regulator

of the transition between homeostatic and neurotoxic states in microglia [30] strongly implicated in risk for

AD [31,32] and AMD [33]; TYROBP which encodes the TREM2 adaptor protein DAP12, mutations of which are

10



implicated in a frontal lobe syndrome with AD-like pathology [34] and expression of which is upregulated in white

matter microglia in MS lesions; SPP1 (osteopontin), implicated in microglial activation in brains affected by

MS [35] and AD [36]; and CTSB, encoding the major protease in lysosomes cathepsin-B, which is upregulated in

microglia responding to β-amyloid plaques in AD [36]. Initiation of the pathologic accumulation of extracellular

material occurs by different means in these three neurodegenerative diseases. However, the finding that microglial

phagocytic, lipid metabolism, and lysosomal activation pathways are upregulated in the early or acute active

stage of all three diseases suggests a convergent role for dysregulation in microglia directed towards clearance of

extracellular deposits of debris.

Astrocyte activation signature identified in dry AMD is shared across the early phase of
multiple neurodegenerative diseases

While astrocyte transcriptomic states and dynamics have been established in mouse models of AD, astrocyte

profiles have not been profiled in human AMD lesions at a single-cell resolution [6]. As our initial analysis

implicated astrocytes in disease pathogenesis (Fig. 2D-E), we performed similar cross-disease analysis within the

astrocyte populations using the CATCH method. Using MELD and topological activity analysis, we identified

four clusters of astrocytes at fine granularity within the diffusion condensation hierarchy: a cluster enriched for

cells from control samples, a cluster enriched for cells from patients with early, dry AMD, a cluster enriched for

cells from patients with late-stage neovascular AMD and a cluster with equal numbers of cells from all three

conditions (Fig. 4A). When comparing the transcriptomic profiles of cells within the dry AMD-enriched and

control-enriched astrocyte populations, key activation and degeneration associated genes, such as GFAP, VIM,

and B2M were upregulated (Fig. 4D).

Using MELD and topological activity analysis, we identified clusters that isolated stage-specific populations

within MS and AD astrocytes. In both diseases, we identified three clusters: a cluster enriched for cells from

control brain tissue, a cluster enriched for cells from early-stage AD tissue or acute active MS lesions, and a

cluster enriched for cells from late-stage AD tissue or chronic inactive MS lesions (Fig. 4B, C). By comparing

the control-enriched and early disease-enriched clusters within each dataset using condensed transport, we

identified a shared gene signature enriched in the early stage neurodegenerative disease subcluster across all

three diseases (Fig. 4E). The integrated gene signature included markers of activated astrocytes, including

VIM, GFAP, CRYAB, and CD81 [37, 38], major histocompatibility complex (MHC) class I (B2M ) [39, 40], iron

metabolism (FTH1 and FTL), a water channel component implicated in debris clearance (AQP4 ) [41], along
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with lysosomal activation and lipid and amyloid phagocytosis (CTSB, APOE ). Of interest, many upregulated

genes were shared between the microglial and astrocyte early stage activation signatures, suggesting common

glial stress pathways become activated in neurodegeneration.

Similar to microglia, we mapped homeostatic (GPC5, LSAMP, TRPM3 ) and composite activation signatures

(B2M, CRYAB, VIM, GFAP, AQP4, APOE, ITM2B, CD81, FTL) to early disease-enriched and control-enriched

astrocyte clusters across neurodegenerative diseases. Similar to microglia, the composite activation signature and

homeostatic signatures were divergently expressed by early enriched clusters (Fig. 4E,F upper with expression

values ranging from 0 to 17). Using a recently published disease-associated astrocyte signature established in an

AD mouse model [6], we built a composite activation signature and mapped that onto the early-disease and

control-enriched clusters across conditions. The early disease-enriched clusters displayed higher expression of the

disease-associated astrocyte (DAA) gene signature in addition to the composite activation signature (Fig. 4F,

lower with expression values ranging from 0 to 16).

To validate the astrocyte signature in tissue, we performed simultaneous GFAP immunofluorescence and

RNA in situ hybridization for B2M, a component of MHC-I and member of the shared gene signature on sections

of the human macula. The retinal layers occupied by GFAP-positive astrocytes (inner plexiform layer to inner

limiting membrane) contained a higher density of B2M transcripts in retinas affected by dry AMD relative to

control retina (p-value < 1e-03, two-sided Student’s t-test) (Fig. 4G, H).

Microglia display inflammasome activation signature and astrocytes display pro-angiogenic
signature in late-stage neovascular AMD

While glial activation signatures are shared during the early phase of multiple neurodegenerative disease, it is of

interest to understand if they persist or evolve in the late stage of neurodegenerative diseases. To understand

these glial activation dynamics across stages of AMD, AD and MS, we performed differential expression analysis

between the early stage of neurodegenerative disease-enriched clusters and the late stage of neurodegenerative

disease-enriched clusters of astrocytes and microglia. Across both comparisons, molecular signatures present

in the early stage of AMD, MS, and AD are not detected in microglia and astrocytes during the late stage

of neurodegeneration (Supplementary Fig. 9A-B), indicating transcriptional changes in glia during disease

progression.

To examine the transcriptional changes in glia during progression from early dry to late-stage neovascular AMD

pathology, we performed snRNAseq on three additional retinas from human donor retinas with neovascular AMD,
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and applied the CATCH analysis to 46,783 nuclei when combined with the previously sequenced samples. We

identified a granularity of the CATCH hierarchy with low topological activity and assigned cell type labels based

on the expression of cell type-specific gene signatures (Fig. 5A,B). Following the fine grained CATCH analysis,

we identified two clusters of microglia: one cluster enriched for cells from control retinas and one cluster enriched

for cells from late-stage, neovascular AMD retinas (Fig. 5C). To identify cell-type specific transcriptional changes

in the subpopulation of microglia enriched in late stage neovascular AMD pathology, we performed condensation-

based differential expression analysis between the control-enriched and the neovascular AMD-enriched clusters.

Analyzing the top differentially expressed genes between these subpopulations (FDR corrected p-value < .1)

revealed an inflammasome-related signature including IL1B, NOD2, and NFKB1. The pro-IL-1β protein requires

both cleavage and release via inflammasome-mediated caspase activation and pyroptosis for bioactivity [42].

Here, activation of inflammasome sensors and oligomerization into proteolytically active complexes may occur in

response to a significant and lasting drop in oxygen tension or chronic lipid exposure [42, 43], both known to

drive inflammasome activation via NLRP3 (NOD-, LRR- and pyrin domain-containing 3) (Fig. 5D). In late stage

AD and MS alternative cellular stress-associated pathways were upregulated including transcriptional regulators

of the ER stress response (XBP1 ) and their target genes involved in protein folding and transport (HSPA1A,

HSPA1B, HSP90AA1 ) and glycosylation (ST6GAL1 and ST6GALNAC3 ), as well as regulators of autophagy

and proteostasis (ATG7, MARCH1, USP53 ). These signatures highlight a shared cellular stress induction.

Using the fine grained CATCH workflow, we identified two astrocyte subpopulations: one cluster enriched

for cells from control retinal samples and one cluster enriched for cells from late-stage, neovascular AMD

retinal samples (Fig. 5E). To identify signatures of AMD present in astrocytes during the late stage of disease

pathogenesis, we performed condensation-based differential expression analysis between control-enriched and the

neovascular AMD-enriched clusters. Analyzing the top differentially expressed genes (FDR corrected p-value<.1)

between these subpopulations revealed elevation of VEGFA, NR2E1, and HIF1A expression (Fig. 5F), all of

which are regulators of cellular responses to low oxygen tension [44–46]. While VEGFA is known to be an

important mediator of the abnormal blood vessel growth that characterizes late-stage neovascular AMD and is

the target of current therapies for the treatment of disease [33,47,48], our data demonstrate in humans a specific

subpopulation of retinal astrocytes that are a source of this signal.
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Microglia-derived IL-1β drives pathologic neovascularization via astrocytes

As microglia are known to influence astrocyte functional states through the secretion of soluble factors, we wanted

to determine if microglia-derived cytokines could drive VEGFA expression from retinal astrocytes [49–51]. Since

CATCH was able to isolate astrocyte and microglial states, we utilized CellPhoneDB interaction analysis [52] to

create a putative list of possible microglia-derived cytokines that may interact with astrocytes to drive VEGFA

expression (Fig. 6A). From this analysis, the neovascular-enriched microglia cluster interacted most significantly

with astrocytes through IL-1β and IL-6, while in controls, microglia-astrocyte interaction was primarily mediated

by IL-4. Furthermore, IL-1β interacted most significantly with the neovascular-enriched astrocyte subpopulation.

Using conditional-Density Resampled Estimate of Mutual Information (DREMI), a method to identify non-linear

associations in data [53], we find that IL-1β signaling on astrocytes was most significantly associated with

astrocyte production of VEGFA. Meanwhile IL-4 signaling was most significantly associated with a decrease in

astrocyte VEGFA production (Fig. 6B). We then set out to validate the cytokine regulators of astrocyte VEGFA

production in an unbiased manner.

Cytokines are a part of a complex network of proteins that can produce additive, synergistic, or antagonistic

effects. To demonstrate this relationship, we used two screening methods. We first used a combinatorial screening

approach utilizing all cytokines identified in our snRNAseq dataset, removing one at a time to test its necessity

in creating a VEGFA expressing astrocyte. Screening with human iPSC-derived astrocytes demonstrated that

IL-1β , IL-10 and IL-17 are positive regulators of VEGFA production in these cells as their subtraction causes

decreased VEGFA compared to human iPSC-derived astrocytes stimulated with all cytokines (Fig. 6C). We

then tested the sufficiency of some of these cytokines being able to regulate VEGFA production by completing

a single protein stimulation and noted that only IL-1β caused astrocyte VEGFA secretion (Fig. 6D). Across

both analyses, IL-1β positively regulated induction of VEGFA from astrocytes both in vitro (Fig. 6C-D) and

in silico (Fig. 6B). Our analysis of VEGFA regulation validated the computational prediction of IL-4 being

a negative regulator of VEGF-A production (Fig. 6B-C), showing the utility of our approach in identifying

signaling interactions between cellular subsets identified with CATCH.

With identification of cytokine mediators of astrocyte VEGFA production, we validated our findings in vivo

by injecting IL-1β intravitreally in a mouse. This resulted in upregulation of VEGFA (Fig. 6E, F). Not only

was there an increase in the amount of VEGFA (Fig. 6G, right), there was an increase of overlapping signals of

GFAP and VEGFA, indicative of astrocyte VEGFA activation and secretion (Fig. 6G, left), along with VEGFA
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expression extending from ganglion cell layer localization down to other layers of the retina. A similar trend

was also observed in the adjacent retinal pigment epithelium (RPE), but did not reach statistical significance

(Supplementary Fig. 8), likely due to variation in intrinsic autofluorescence among RPE cells. Altogether, this

demonstrated the sufficiency of cytokines such as IL-1β to induce VEGFA secretion in astrocytes in vitro and in

vivo. Cytokines such as IL-1β are increased in the vitreous of patients with neovascular AMD [54], but source

and the role of these cytokines in angiogenesis has not been explored. We undertook immunohistochemical

staining for IL-1β in retinal samples from the macula of patients with AMD and healthy controls, observing that

there was an increased amount of IL-1β intensity in the inner retinal layers, where astrocytes reside (Fig. 6I).

Furthermore, upregulation of VEGFA was seen in these areas (Fig. 6G), indicating that the phenomenon we

observe in vitro and in mice likely occurs in human neovascular AMD as well (Fig. 6G-I).

Discussion

Here, we used snRNA-seq to generate a single-cell transcriptomic atlas of AMD during pathological progression,

as well as develop a machine learning pipeline that allows for meaningful comparisons between cell types

and states across diseases and phases. To generate rich signatures for cross-disease comparison among rare

cellular subpopulations, we developed a topology-inspired suite of machine learning tools for single-cell analysis,

‘CATCH’, a tool that identifies cellular subpopulations enriched in a specific condition by computing the

complete hierarchy of cellular states using ‘diffusion condensation.’ This pipeline identified cell states enriched in

disease, characterized pathogenic expression signatures, and predicted cellular interactions between pathogenic

populations, uncovering potential therapeutic targets.

Using CATCH, we identified and characterized specific subpopulations of microglia and astrocytes enriched

in the early stage of dry AMD displaying activation signatures related to phagocytosis, lipid metabolism, and

lysosomal function. We found similar populations of microglia and astrocytes in analyses of previously published

AD and MS single-cell data. While initial inciting events likely differ between neurodegenerative conditions,

lipid-rich extracellular plaques play a prominent role in each condition. It is likely that glial cells coordinate

clearance of extracellular debris and, in turn, become activated. While the initial phagocytic clearance may

be beneficial, glial activation has been shown to play a role in degeneration in AMD, AD, and MS. In later

stages of disease, this shared activation landscape evolves. In advanced neovascular AMD, our analysis identified

a microglia inflammasome-related signature that drives pro-angiogenic astrocyte polarization and pathologic

neovascularization. Microglial inflammasome activation and subsequent IL-1β release could be mediated by
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a variety of signaling sensors. The NLRP3 sensor may be activated in response to a variety of stress signals,

including extended lipid exposure or prolonged hypoxia, and has been previously implicated as a microglial

driver of neurodegenerative immunopathology, making it a likely candidate [55]. Microglia are highly mobile cells

and responsive to a wide variety of stimuli. While lineage tracing that definitively differentiates mononuclear

phagocyte origin into circulating macrophages, tissue resident macrophages, and microglia remains challenging,

it is believed that the mononuclear phagocytes found at the apical side of the RPE in the vicinity of drusen,

which induce activation of the inflammasome, come from all three populations [56]. Furthermore, emerging data

suggests that the inflammasome and IL-1β have critical roles in promoting degeneration in MS and AD [10–12].

IL-1β treatment of RPE cells in vitro results in upregulation of VEGFA expression [57]. Thus our results implicate

this immune sensor in AMD as well.

This set of analyses has clear implications for potential therapeutics for AMD and other neurodegenerative

diseases. Currently, anti-VEGF therapy is the primary intervention approved to treat AMD and is only effective

in the most advanced stage of disease. Our unbiased analysis not only identified the cell-type specificity of VEGFA

expression but also identified pathogenic signaling interactions that promote AMD disease progression. Given

that VEGFA is a freely diffusible glycoprotein, its production from retinal astrocytes can induce angiogenesis

from the choroid. Currently, therapies that inhibit IL-1β are available and used in clinical practice for the

treatment of other diseases. Inhibiting microglia-derived IL-1β in neovascular AMD could provide therapeutic

benefit, preventing further neovascularization in advanced patients, or even preventing neovascularization before

it begins in patients with earlier stages of disease. Since these mechanisms are shared across MS and AD, it

is plausible that these interventions could provide benefit to patients suffering from other neurodegenerative

conditions as well. Identifying promising therapeutic candidates to test in neurodegenerative disease clinical

trials remains important, and our data suggest that approaches targeting glia may be broadly applicable to

multiple neurodegenerative diseases.

Methods

Ethics Statement

This study, acquisition, and use of post-mortem human retinal samples was approved by the Yale Human

Research Protection Program’s Institutional Review Board (Yale Protocol Number 2000028616). We complied

with all relevant ethical regulations for work with human participants. All human tissue samples were obtained

with informed consent prior to tissue collection from participants if enrolled antemortem or legal guardians
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if post-mortem. Mouse experimental protocols were approved by Yale University’s Institutional Animal Care

and Use Committee (Yale Protocol Number 2022-20275). All experiments were performed in accordance to the

guidelines outlined by Yale University’s Institutional Animal Care and Use Committee.

CATCH Analysis Details

The CATCH framework constitutes a group of topologically inspired machine learning tools to identify, characterize

and compare condition-enriched populations of cells across the cellular hierarchy. This framework is centered

around the diffusion condensation process, which learns the structure of data across granularities. Beyond

making significant adaptions to diffusion condensation, we have introduced tools to help analyze the rich amount

of multigranular information produced by diffusion condensation: cellular hierarchy visualization, topological

activity analysis, automated cluster characterization and differential expression analysis.

In the following sections, we provide a thorough description of each aspect of CATCH. This includes detailed

descriptions of the diffusion condensation process as well as its relationship with MELD, Wasserstein earth

mover’s distance and topological activity analysis. We complete this section with a rigorous set of comparisons

to benchmark our method.

Background in manifold learning and diffusion filters

Many of the core concepts in diffusion condensation and its adaptions presented here are based on advances in

manifold theory and graph filters. Typically, n-dimensional data X = {x1, . . . , xN} can be modeled as originating

from a d-dimensional manifold Md collected via a nonlinear function xi = f(zi). This is because data collection

strategies (such as single cell RNA-sequencing) create high dimensional observations even when the intrinsic

dimensionality is relatively low. Algorithms that use this manifold assumption [58–61] leverage the intrinsic, low

dimensional geometry of the manifold to explore relationships in data. Diffusion maps [59] presented a framework

that captures intrinsic manifold geometry using random walks that aggregate local relationships between data

points to reveal nonlinear geometries. These local relationships, known as affinities, are constructed using a

Gaussian kernel function:

K(xi, xj) = exp

(
−∥xi − xj∥

2

ε

)
(1)

where K is an N ×N Gram matrix and bandwidth parameter ε which controls locality. A diffusion operator

is defined as the row normalization of the N ×N Gram matrix K:
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P = D−1K (2)

where D(xi, xi) =
∑

j K(xi, xj). The diffusion operator matrix P represents single-step transition probabilities

for a Markovian random walk or diffusion process. Furthermore, as shown in [59], powers of this diffusion

operator P (represented as Pt where t > 0) represent a t-step random walk.

Recent works in data diffusion [27,62–64] have shown that this framework proposed by [59] can be used as

a low pass filter when the operator P is directly applied to data features, effectively moving data points close

to their diffusion neighbors on the manifold. This low pass filtering process effectively removes high frequency

variation, or noise, and maintains only the principle low dimensional geometry of the data manifold.

Overview of diffusion condensation and its limitations

Diffusion condensation is a dynamic process that builds upon previously established concepts in diffusion filters,

diffusion geometry and topological data analysis. The algorithm slowly and iteratively moves points together in

a manner that reveals the topology of the underlying geometry. The diffusion condensation approach involves

two steps that are iteratively repeated until all points converge:

1. Compute a time inhomogeneous Markov diffusion operator from the data;

2. Apply this operator to the data as a low-pass diffusion filter, moving points towards local centers of gravity.

As established in prior work [8,17,27], the application of the operator P to a vector v averages the values

of v over small neighborhoods in the data. When applied directly to a coordinate function, this application

condenses points towards local centers of gravity as determined by bandwidth parameter ε, creating a filtered

set of coordinates. In this process, if X(0) = X is the original dataset with diffusion operator P0 = P, then

X(1) = X̄ = X(0)∗P0. While previous applications of diffusion filters simply apply one iteration of this diffusion

filtering process to data, we can iterate this process to further reduce the variability in the data by computing

the Markov matrix P1 using the coordinate-filtered X(1). A new filtered coordinate representation X(2) is

obtained by applying P1 to the coordinate functions of X(1). Initial applications of the diffusion operator P

to X dampens high frequency variations in the coordinate function, efficiently moving similar points close to

one another. Later applications dampen low frequency variation, moving similar groups of points towards one

another. A more complete explanation of diffusion condensation and its mathematical properties can be found

in [8] and [17].
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In its original form, the diffusion condensation process cannot be applied to scRNAseq data. While useful for

general data analysis tasks, this process has limitations:

1. the approach does not work in the non-linear space of the single cell transcriptomic manifold;

2. does not scale to even thousands of data points;

3. does not identify granularities of the topology which meaningfully partition the cellular state space and

4. does not identify pathogenic populations implicated in disease processes.

In this work, we address each of these limitations and further extend the framework to efficiently perform key

single cell analysis tasks such as cluster characterization and differential expression analysis.

To address these concerns, we have made the following significant adaptions for application to single cell data:

1. Dynamically learn the geometry of the single cell manifold with each diffusion filter using t-step random

walks optimized with spectral entropy;

2. Visualize learned hierarchy via embedding the condensation tree;

3. Use topological activity to identify meaningful granularities for downstream analysis;

4. Implement diffusion operator landmarking, weighted random walks and data merging to efficiently scale to

thousands of cells;

5. Implement diffusion condensation with alpha decay kernel for automated cluster characterization and

efficient computation of differentially expression genes.

Manifold-intrinsic diffusion condensation learns cellular hierarchy from single-cell transcriptomic
data

Box 1
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Algorithm 1 Manifold-intrinsic Diffusion Condensation
Input: Cell-by-PC data matrix X, initial kernel bandwidth parameter ε0 and merge threshold ζ
Output: cluster labels by iteration

1: X0 ← X, i← 0
2: while number of points in Xi > 1 do
3: Merge data points a,b if ||Xi(a)−Xi(b)||2 < ζ, where Xi(a) is the a-th row of Xi

4: Update the cluster assignment for each original data point based on merging
5: Di ← compute pairwise distance matrix from Xi

6: Ki ← alpha-decay kernel affinity(Di, εi)
7: Pi ← row normalize Ki to get a Markov transition matrix (diffusion operator)
8: ti ← spectral entropy of Pi

9: Xi+1 ← Pti
i Xi

10: εi+1 ← update(εi)
11: i = i+ 1
12: end while

Our implementation of diffusion condensation algorithm takes a cell-by-principal component matrix X

(typically first 50 components) and computes a diffusion operator P, representing the probability distribution

of transitioning from one cell to another in a single step using a α-decay kernel function with fixed bandwidth

ε (Alg. 1: Steps 5-7). While other manifold learning techniques abstract the data to a point where derived

manifold-intrinsic features have an unclear relationship with gene expression, our approach learns the manifold

while working in principal components, which have a clear relationship with genes. By using the principal

components as the substrate for condensation, we can easily characterize clusters and perform differential

expression analysis in gene expression space in downstream analysis.

Another key improvement we make in the condensation algorithm is raising P to the power of t (rather

than 1 as in [8]), simulating a t-step random walk over the data. This approach adaptively denoises and

refines these transition probabilities across iterations such that transitions occur on the non-linear single cell

manifold [27,59,65]. This t-step diffusion operator Pt are applied to the input data, acting as a manifold-intrinsic

diffusion filter, effectively replacing the coordinates of a point with the weighted average of its t-step diffusion

neighbors. We track the values of t computed across iterations and perform an ablation study to show the

necessity of adaptively tuning t in each iteration of the manifold-intrinsic diffusion condensation (Supplementary

Fig. 2A-B). See Alg. 1 for pseudocode of this algorithm. When the distance between two cells falls below a

distance threshold ζ, cells are merged together, denoting them as belonging to the same cluster going forward

(Alg. 1: Steps 3,4). It is important to note that in the original work, [8] did not merge points. This process is

then repeated iteratively until all cells have collapsed to a single cluster. This merging step, implemented in our

manifold-intrinsic diffusion condensation approach, allows for the fast computation of the cellular hierarchy during
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coarse graining. When applying this manifold-intrinsic diffusion condensation process to single-cell transcriptomic

data, we can see cells condense to cluster centroids across iterations, efficiently and rigorously learning the

hierarchy of single-cells (Fig. 1C). Finally, through scalable implementation tricks, such as diffusion operator

landmarking [66] and weighted random walks, we have allowed diffusion condensation to scale to thousands of

single cells (Supplementary Fig. 2F). Additional details on the selection of t as well as scalable implementation

tricks can be found below.

Learning manifold geometry dynamically with spectral entropy and t-step diffusion filters

While the initial implementation of diffusion condensation was created to understand multigranular structure of

linear data, single cells occupy a highly non-linear space requiring manifold learning strategies [27,59,65]. In

single cell data, technical noise, such as drop out and variation, creates measurement artifacts. When building

diffusion probabilities on this sort of noisy data, high transition probabilities can be calculated between unrelated

cells inappropriately. Thus, directly working with P, fails to acknowledge non-linearities and technical artifacts

present within single cell data. Previous work in data diffusion has shown that raising the diffusion operator P

to the power of t refines these transition probabilities, increasing the chance of transitioning to more related

cells [27,59,65]. This powering step allows learning of the relevant non-linear geometry of the data manifold,

allowing us to ignore spurious neighbors found in the ambient measurement space of cells and instead finding

diffusion neighbors that lie on the single cell manifold.

As single cell datasets can often suffer from different types and scales of noise, previous approaches have found

that the correct number of t-steps to take must be computed adaptively in a data dependent manner [27,67].

Previously proposed strategies to select t however, are often slow, as they require trial-and-error approach

which rely upon the structure of the underlying dataset. In diffusion condensation, however, the structure of

the underlying dataset continuously shifts between granularities due to the repeated application of diffusion

filters, making the repeated computation of t necessary and through these techniques computationally unwieldy.

Therefore, we propose to select t adaptively at each condensation iteration by using a spectral entropy based

approach. Previously, it has been shown that powering the diffusion operator P differentially effects the

eigenvectors of the powered matrix. While the noisy, high frequency eigenvectors rapidly reduce to zero, the

more informative, low frequency eigenvectors diminish much less rapidly [27]. We reason that there is a value of

t which optimally reduces the noisy information from the high frequency eigenvectors while maintaining the

maximum information from the low frequency, informative eigenvectors. To identify this point, we compute the
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spectral entropy of the diffusion probabilities P when powered to different levels of t.

Spectral entropy is defined as the Shannon entropy of normalized eigenvalues, i.e.,

S(P, t) = −
∑
i

ψt
i log(ψ

t
i), (3)

As there is a degree of information loss with each increasing value of t, we try to identify the point at which

this information loss curve stabilizes. While powering to low values of t rapidly decreases spectral entropy as large

amount of noise diminish, powering to higher values of t only slowly reduces entropy due to the slower removal

of information from informative, low frequency eigenvectors. Taking the point at which this stabilization occurs

as done in [65], optimally allows us to adaptively select a value of t at each diffusion condensation iteration,

allowing us to produce a diffusion filter which has learned the single cell manifold.

In fact, deriving t adaptively in a data driven manner is critical to learning the multigranular cluster structure

of data. In order to illustrate this point, we generated synthetic single cell data using Splatter [19]. As can

be seen, across differing amounts of variational and drop out noise, optimally selecting t via spectral entropy

produces a better set of cluster labels than when setting t in a fixed, user-determined manner (Supplementary

Fig. 3B). In fact, we can see that setting t to 1 does not learn the data manifold or the cluster structure of even

fairly noiseless single cell data, revealing the need for selecting a high level of t in an adaptable, data-driven

manner. Finally, we see that over successive condensation steps, the complexity of the data decreases and thus

requires lower levels of t to learn (Supplementary Fig. 3A).

Improving scalability with weighted random walks, landmarked diffusion operators and merged
data points

Repeated computation of a diffusion operator from high dimensional single cell data, powering of this diffusion

operator to identify the optimal value of t followed by diffusion filter application via matrix multiplication is

computationally expensive. Repeating these computations, potentially hundreds of times, as done by diffusion

condensation is unwieldy. In fact, this approach, in its most basic implementation, scales very poorly to high

dimensional single cell data with tens of thousands of features and potentially hundreds of thousands of cells. To

improve computational efficiency, we perform the following steps:

1. Merge points together that fall below a preset distance threshold ζ to create a cluster and weighting random

walks to maintain effect of data density;

2. Compute compressed diffusion operator through landmarking [66] to efficiently compute spectral entropy

as done in [65].
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Collectively, these advances drastically improve the computational speed of diffusion condensation (Supple-

mentary Fig. 2F). In practice, a complete cellular hierarchy of a 13,000 cell dataset can be analyzed within 6

minutes in a Google Colaboratory notebook (a service which provides 4-core 2-GHz CPU and 20 GB of RAM for

free).

Visualizing and analyzing condensation tree with topological activity analysis to identify meaningful
granularities for downstream analysis

Topological data analysis (TDA) is a powerful framework that learns and analyzes data across granularities. In

TDA, one identifies related data points by identifying all pairs whose distance falls below a distance threshold

δ in a distance matrix D. Any pair of points that falls below this threshold is deemed to be part of the same

connected component or cluster. As δ increases, more cell pairs will be connected, quickly creating fewer connected

components, or fewer larger clusters, at coarser granularities. In topological data analysis, persistent homology

is a principled approach to track the connected components that are created and destroyed across a range

of granularities. While diffusion condensation learns the multigranular structure of data through a cascade

of non-linear diffusion filtration approach instead of an increasing distance threshold, these approaches are

intuitively related.

We can study this diffusion condensation process either in a holistic manner, evaluating all granularities

simultaneously, or in a detailed manner, by evaluating meaningful granularities independently. At a high level,

the cellular hierarchy can be studied by visualizing the cellular hierarchy, containing all merges across all

granularities. As manifold-intrinsic diffusion condensation operates in PCA dimensions, we practically implement

this visualization by stacking the first two axes of Xi → Xi+1 · · ·XI , creating a hierarchical tree that summarizes

the cluster structure of the data across granularities (Fig. 1D-i).

For more detailed analysis, we can cut this hierarchical tree at meaningful levels to identify granularities of

clusters that optimally partition cells into meaningful clusters based on the data geometry. Using persistent

homology, we define a topological activity analysis, a technique to analyze the creation and destruction of clusters

across consecutive iterations (Xi → Xi+1) of the manifold-intrinsic diffusion condensation process. Topological

activity analysis is a variation of the total persistence summary statistic often used to characterize topological

activity in classical topological data analysis [68]. In this analysis framework, we summarize the merging of points

during the condensation process and assign each cluster a topological ‘prominence’ value known as persistence.

Highly persistent components are taken to represent groups of cells that are similar in their transcriptional profile

and distinct from other cells. These clusters, and their associated persistence values, are best represented using
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a ‘persistence barcode.’ This is a visualization [69] consisting of horizontal bars of different lengths; each bar

corresponds to one topological feature—a subgroup of cells in our case—while the length of each bar depicts

the persistence of that feature, directly indicating to what extent the feature is prominent. Assuming that the

persistence barcode consists of a set of bars with end coordinates B := {b1, . . . , bk}, we calculate an activity

curve A : R→ N defined by A(i) := |{b ∈ B | b ≤ i}|, i.e., the number of topological features (cell clusters) that

are active and independent at a given iteration i. This activity curve, first proposed by [70] and implemented

by [71], allows us to identify iterations of rapid condensation as well as iterations of relative inactivity through the

gradient of A. Specifically, we are interested in contiguous segments in the preimage of ∂A/∂i = 0, which we refer

to as i-segments. The length of an i-segment is the number of iterations for which there is no change in topological

activity. Thus, the number of iterations for which ∂A/∂i = 0 provides a principled way of selecting meaningful

condensation granularities computed by the diffusion condensation process. Inspired by the nomenclature of

persistent homology, we refer to the length of a i-segment of no topological activity as its persistence, meaning

that we are looking for the most persistent of such topological activity segments.

Identification of disease-enriched populations in conjunction with MELD

While analysis of the cellular hierarchy will identify populations of related cells in an unbiased and multigranular

manner, it does not use condition of origin information to identify cellular populations that are enriched in

disease conditions of interest. While we can integrate cells from different disease conditions in our analysis, cells

of a certain pathogenic transcriptomic state may be over represented in a submanifold of a given cell type. By

comparing the cells of a particular type directly to each other based on condition of origin, we dilute out this

enrichment information and lose important signal. In fact, identifying these pathogenic states and comparing

them directly with clustering and differential expression tools has been shown to be a more powerful method to

identifying condition-enriched cell states and expression signatures [9, 72]. We explore this point later in this

section.

To take condition-specific information into consideration, we use MELD to identify cellular populations

that are enriched or depleted in different disease phases [9]. MELD is a manifold-geometry based method of

computing a likelihood score for each cell, indicating whether it is more likely to be seen in the normal or diseased

sample. Finding a clustering method that separates these condition-enriched groups is a difficult problem that

needs to be performed to identify discrete cellular populations which can be thoroughly described. To rigorously

identify cell populations with strong disease-specific enrichment signals, we combine this cell-level MELD score
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with information from our topological activity analysis to identify resolutions that produce stable clusters. Then

within this stable clustering, we identify populations that are enriched in differing disease conditions.

Automated cluster characterization via manifold-intrinsic diffusion condensation

While identification of pathogenic cellular states is critical, biologists are more interested in what defines these

populations. Most manifold learning methods visualize or cluster populations of interest, requiring further

expensive computation to characterize cell populations and discover differentially expressed genes. As our

approach continuously condenses the transcriptomic profiles of single cells to local cluster centroids in manifold

space, at any iteration, the transcriptomic states of the condensed data can be extracted at no additional

computational cost. To enhance this convergence to centroids we implement our diffusion condensation process

with an α-decay kernel (Supplementary Fig. 2C). This kernel more strongly thresholds the conversion of distances

to affinities, closely resembling the box kernel, which accurately computes cluster centroids over the course of

main point merges. When diffusion condensation merges two cells together at a particular iteration, the newly

formed point lies close to the centroid of the original two cells in transcriptomic space. Under specific conditions,

the new point is exactly the cluster centroid as delineated in the Proposition below. First, we define the α-decay

kernel as:

Kα(xi, xj) = exp

(
−∥xi − xj∥

α

εα

)
, i, j = 1, . . . , N. (4)

The standard Gaussian kernel function as shown in equation 1 has an α of 2. The default α-decay kernel

meanwhile uses a much higher value (default in our implementation is 40), which converts close distances

into affinities much more stringently (Supplementary Fig. 2C). As α increases to infinity, this kernel function

converges almost completely to the box kernel. With this kernel, we are ready to state a set of conditions under

which the diffusion condensation process can be easily characterized.

Proposition 1. Assume there exists a unique global minimum non-zero distance δi between points xa, xb at

each iteration i, with the next pair of points at distance at least δi + τi with 0 < τi. Note that xa, xb could have

multiplicity greater than 1, representing clusters of size > 1. Then set the bandwidth to ϵi := δi + τi/2 at each

iteration of the condensation process. For a large enough α, the diffusion condensation process will maintain two

invariants for the first N − 1 steps:

1. The number of points will be N − i;
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2. Unique points will be located at the centroid of their cluster.

Proof. It is easy to verify (1) and (2) hold for step zero. For all i < N and for sufficiently large α, Kα(xk, xj)

becomes arbitrarily close to 1 for (k, j) ∈ {(a, a), (a, b), (b, a), (b, b)} and 0 otherwise. Exactly one merge occurs

at each timestep between points at xa and xb. Given Pi as described above, they merge to the point |xa|xa+|xb|xb

|xa|+|xb| ,

i.e. the cluster centroid. By induction (1) and (2) hold for all i < N .

In this setting, the condensation process always converges in exactly N − 1 steps. In practice, we aim

for much shorter convergence times as there are many fewer than N − 1 interesting levels of clustering. For

50,498 cells, we find a set of parameters that allow for convergence in 150 steps. For this reason we use a larger

bandwidth ϵi which leads to much faster convergence and gives cluster centers at each level that are close to but

not exactly the cluster centroids of the points they represent. Another factor is the setting of the α parameter.

Since, manifold-intrinsic diffusion condensation operates in PC dimensions, the complete gene expression profile

of cluster centroid xab can easily extracted by inverting the PC dimensions. We show that this point is not only

mathematically true but also empirically true in practice (Supplementary Fig. 3C).

Differential expression analysis via approximation of gene Wasserstein distance

Beyond cluster characterization, differential expression analysis is a critical method to identify signatures of

pathogenic populations. Earth Mover’s Distance (EMD), also known as ‘optimal transport’, typically manifested

in 1D-Wasserstein distance, is a popular and established method to extract differentially expressed genes between

clusters [27,73–75]. EMD, however, is computationally expensive, as it computes an optimal mapping between

points, running in Õ(n3) time. Previously, tree-based implementations like FlowTree [76] and QuadTree [77] have

been able to closely approximate ground truth Wasserstein distance while significantly improving runtime by

constraining the transport of points through the branches of a hierarchical tree [78]. Since diffusion condensation

too produces a tree embedding of the data, we utilize tree based transport for differential expression.

EMD, or 1-D Wasserstein distance, is a measure of distance between two distributions. For a given ground

distance, the Wasserstein distance between distributions can be thought of as the minimal total distance needed

to move one distribution to the other. Let µ, ν be two distributions on a measurable space Ω with metric

d(·, ·), and Π(µ, ν) be the set of joint distributions π on the space Ω × Ω, such that for any subset ω ⊂ Ω,

π(ω×Ω) = µ(ω) and π(Ω×ω) = ν(ω). The 1-Wasserstein distance Wd also known as the earth mover’s distance
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(EMD) is defined as:

Wd(µ, ν) := inf
π∈Π(µ,ν)

∫
Ω×Ω

d(x, y)π(dx, dy). (5)

When µ, ν are discrete distributions over points in Rd, of size m,n respectively, this can be equivalently expressed

in matrix notation as:

Wd(µ, ν) := min
Π≥0

m∑
i=1

n∑
j=1

Πijd(xi, xj)

subject to:
m∑
i=1

Πij = νj , ∀j ∈ {1, . . . , n} (6)

n∑
j=1

Πij = µj , ∀i ∈ {1, . . . ,m}

For general ground distances this is computable using the Hungarian algorithm in Õ(n3) time. Intuitively, the

difficulty in computing the optimal transport is finding the map Π which optimizes the cost within the constraints.

However, for a tree metric, this optimal map is easy to compute in closed form because there is only a single

path (through the tree) between pairs of points. This single path between pairs of points results in a reduced

computational complexity of Õ(n). This is best understood using the Kantorovich-Rubinstein dual form of the

Wasserstein distance:

Wd(µ, ν) = sup
f :∥f∥L≤1

∫
Ω
f(x)dµ−

∫
Ω
f(x)dν (7)

where the witness function f : Ω→ R and ∥ · ∥L denotes the Lipschitz norm. This dual form holds under a few

minor conditions which hold for the spaces considered here. For more information see [79].

Given some rooted tree T with strictly non-negative edge lengths, we define the natural tree metric dT (x, y)

as the length of the unique path between nodes x, y. We denote the mass of a distribution on a subtree Tr rooted

at node r as µ(Tr) =
∑

x∈Tr
µ(x). For each node v ∈ T we denote its associated parent edge as ev with weight

wv. In this setting, it is easy to construct the optimal witness function in eq. 7. Without loss of generality,

one starts at the root r and builds f such that f(r) = 0 and for each edge e(u, v) where u is a parent of v,

f(v) = f(u) + we · sign(µ(Tv)− ν(Tv)). Given this construction, it is easy to see that the Wasserstein distance

with tree ground distance has the following closed form:

WdT (µ, ν) =
∑
v∈T

wv|µ(Tv)− ν(Tv)|. (8)

The question then comes to: what are useful tree metrics? An ideal tree metric that has low distortion

of Euclidean space and is scalable to high dimensions. QuadTree [77] is a tree metric algorithm designed to
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approximate the optimal transport distance between discrete measures with Euclidean ground distance by

recursively partitioning space into hypercubes, but does not scale well with dimension. Specifically, assume,

without loss of generality, that the data lies in the [0, 1]d hypercube, then at each level h ∈ [0, H) divide the space

into 2d
h hypercubes with side length 2−h. This forms an H-level tree with each node representing a hypercube.

If the center of the hypercube is randomly shifted, then the QuadTree distance WdQT
has distortion at most

O(d log 1/τ) where τ is the minimum distance between datapoints, i.e.

c · (d log τ)WdQT
(µ, ν) ≤W∥·∥2(µ, ν) ≤ C · (d log τ)WdQT

(µ, ν) (9)

for some constants c, C in expectation [77].

However, QuadTree distance scales poorly as it is computed in O(Nd · log(d1/τ)). In the high dimensional

setting, such as snRNAseq data, the poor scaling with respect to d both computationally and in the approximation

is undesirable. In this setting [78] suggests sampling trees using furthest point clustering [80]. Furthermore, [76]

implements FlowTree, a small modification to QuadTree that makes tree Wasserstein distances significantly more

accurate with the addition of small additional computational cost.

Drawing from both FlowTree and QuadTree, CATCH implements a new formulation of EMD over the

diffusion condensation tree. For two diffusion condensation clusters a, b located at Ca, Cb respectively we define

the condensation-based Wasserstein approximation distance between them as:

WCT (a, b, T ) = ∥Ca − Cb∥2 +
∑

e(u,v)∈Ta

we · a(Tv) +
∑

e(u,v)∈Tb

we · b(Tv) (10)

where we := 2−h∥Cv − Cu∥2 for edge e(u, v) at depth h and a(x), b(x) are defined as indicator functions of their

respective clusters.

This leads to the following proposition stating that no matter how close we are to the settings in Proposition 1,

WCT still represents a valid tree Wasserstein distance between clusters.

Proposition 2. The condensation-based Wasserstein distance approximation distance WCT , for any diffusion

condensation tree T , defines a valid Wasserstein distance over a tree ground distance for any two clusters in that

tree.

Proof. We show this by constructing the associated tree metric dCT on an arbitrary condensation tree TCT and

conclude by showing that WdTCT
is equivalent to WCT . Begin by rooting the tree at a node representing Ca

with two children, the root of Ta named ra and Cb. The edge e(Ca, ra) has weight 0 and the edge (Ca, Cb) has
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weight ∥Ca − Cb∥2. The node Cb will have a single child node the root of Ta named rb, and is connected by an

edge of length zero. All other nodes will be defined as in Ta and Tb with associated edge weights.

It is easy to verify that the path measure over TCT construction represents a valid distance dCT . Finally, we

verify that the Wasserstein distance with a ground distance of dCT is equivalent to WCT as defined in eq. 10.

Indeed, because we added a skip connection in the tree to directly connect nodes a, b with an edge of length

∥Ca − Cb∥2 and since a(Tv) for v ∈ Tb is always zero and vice versa, we have

(11)

WdCT
(a, b) =

∑
e(u,v)∈TCT

we|a(Tv)− b(Tv)|

= we(Ca,Cb)|a(TCb
)− b(TCb

)|+
∑

e(u,v)∈Ta

we|a(Tv)− b(Tv)|+
∑

e(u,v)∈Tb

we|a(Tv)− b(Tv)|

= ∥Ca − Cb∥2|0− 1|+
∑

e(u,v)∈Ta

we|a(Tv)− 0|+
∑

e(u,v)∈Tb

we|0− b(Tv)|

= ∥Ca − Cb∥2 +
∑

e(u,v)∈Ta

we · a(Tv) +
∑

e(u,v)∈Tb

we · b(Tv)

=WCT (a, b, T ).

Note that WCT does not calculate the Wasserstein distance over the same tree for each set of clusters, and

as shown in [76] this often improves the accuracy as compared. In addition, it is useful conceptually but not

essential that the cluster centers Ca, Cb are near the cluster centroids. In Proposition 1 we delineated the setting

where this holds exactly, but these parameters are impractical for our efficient computation requiring n − 1

diffusion steps. Instead, we are satisfied with centers that are close to the centroids but are efficiently computable

in many fewer diffusion steps. Our formulation is similar to the standard Wasserstein distance with tree ground

distance as in eq. 8, but simplified and optimized for the case of comparing clusters which are elements of the

tree metric. We make two changes. First, we add a skip connection in the tree to directly connect nodes a, b

with an edge of length ∥Ca − Cb∥2 as in [76] which is empirically more faithful in their experiments and ours.

Next, we note that a(Tv) for v ∈ Tb is always zero and vice versa, thus simplifying the second and third terms.

These two optimizations give us an algorithm that is efficient in high dimensions and is effective empirically

(Supplementary Fig. 1E and (Supplementary Fig. 2D) across granularities (Supplementary Fig. 2E).

Using this intuition, CATCH is able to rapidly perform differential expression analysis by approximating

the Wasserstein metric on a per gene basis along the hierarchies generated by manifold-intrinsic diffusion
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condensation. Leveraging our approach’s ability to summarize transcriptomic landscapes with the α-decay

kernel, we use multiple granularities of the cellular hierarchy to accurately approximate ground truth Wasserstein

distance between genes and identify cluster-specific expression signatures [78] (Fig. 1D-iv). We show that this is

empirically true with our comparisons (Supplementary Fig. 2D and Supplementary Fig. 1F).

Inspired by previous statistically sound methods of identifying differentially expressed genes, we implement a

resampling-based approach to identify true differentially expressed genes [73, 81]. In this approach, we estimate

false discovery rate (FDR), which is the expected proportion of rejected null hypotheses falsely for each gene’s

test statistic at a given significance level [73,81]. To calculate FDRs from our Wasserstein values, we generate

a null distribution by permuting the cluster labels (in practice 1000 times) and compute Wasserstein distance

between the permuted classes each time. Using the median of permuted Wasserstein distances for each gene, we

create a null distribution from which we can compute p-values per gene. The attained p-values are corrected

using the Benjamini-Hochberg procedure [82].

Automated cluster characterization and Earth Mover’s Distance between genes in synthetic and
real single cell data

While manifold-intrinsic diffusion condensation implemented with an α-decay kernel can theoretically approximate

ground truth cluster characterizations and compute differentially expressed genes, we wanted to demonstrate

this reasoning in synthetic and real single cell data. To empirically show that out condensation-based approach

approximates EMD between two clusters, we compute EMD values between genes using Wasserstein optimal

transport as well as out approximate approach on synthetic and real data using Gaussian and α-decay kernel

implementations of diffusion condensation. Using single cell data generated from splatter, we compute diffusion

condensation and identified the granularity with the highest topological persistence using topological activity

analysis. We then computed ground truth and approximate differential expression values by comparing every

cluster at this granularity with every other cluster. In our analysis, a total of 12,130,200 and 4,535,640 gene

comparisons were computed using Gaussian and α-decay approaches respectively. Comparing both Gaussian and

α-decay approximate Wasserstein distances against ground truth per gene Wasserstein values, we can see the

value in our α-decay approach (Supplementary Fig. 2D) as it approximates ground truth Wasserstein distance

with a correlation coefficient of .979. Furthermore, our approach computed all 4,535,640 gene comparison in

63 seconds while ground truth values were computed in 43,125 seconds, equating to a 684 fold increase in

computational speed.

We repeated our comparison in real single cell data, again comparing both approaches to ground truth

30



Wasserstein EMD values, this time across 10 granularities identified by topological activity analysis. As previously

performed, at each granularity, all clusters were compared to all other clusters using each approach. Across

all comparisons, a total of 10,166,640 and 2,541,660 comparisons were computed for the Gaussian and α-decay

implementations respectively. Again we see that α-decay is critical to accurately capturing ground truth EMD

values, with our α-decay approach correlating highly with ground truth EMD while Gaussian approach was less

correlated (Supplementary Fig. 1F). Furthermore, we again see an increase in computational speed with our

condensation based approach. In our weighted implementation, we are able to compute all 2,541,660 comparisons

in 32 seconds, while ground truth EMD values were computed in 27,517 seconds, equating to a similar 860

fold increase in computational speed. Next, we show that this correlation between ground truth EMD and

condensation-based Wasserstein distance approximation is not a feature of cluster granularity as defined by

number of cluster (Supplementary Fig. 3D). Finally, we also use α-decay and Gaussian implementations to

compute and compare cluster characterizations to ground truth in real single cell data. Using the same set of

clusters and granularities as previously computed, we see that α-decay kernel again more accurately characterizes

clusters than a Gaussian kernel (Supplementary Fig. 3C).

CATCH identifies differentially expressed genes from noisy single cell data

Previously, disease signatures within a cell type have been determined by comparing cells’ gene expression

profiles based on their condition of origin. For instance, microglia would be separated into two groups based on

condition of origin, either disease or healthy, which would then be compared. We believe that CATCH improves

on this framework by first identifying disease-enriched states and then identifying differentially expressed genes

between these states. This is because our procedure accounts for significant noise that can appear in single cell

data to more purely identify cell states enriched in particular disease settings. In fact, previous studies have

validated that this approach identifies biological processes better than previous ’condition-of-origin’ comparison

approaches [9].

To illustrate this point in real single cell data, we performed differential expression analysis between microglia

based on their condition of origin across all three neurodegenerative disease datasets. We reason that if our

approach is more sensitive to identify differentially expressed genes, a less sensitive approach would not find

as strong of a shared signature. After setting significance cutoffs based on our per gene false discovery rates,

we identified significantly enriched genes in the early or acute active phase of each disease (Supplementary Fig.

10a). However, across all comparisons, we identified significantly fewer differentially expressed genes in this cell
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type analysis (135, 68 and 416) than with our pipeline (618, 795 and 1551 for AMD, AD and MS respectively),

indicating that the identification of pathogenic cellular subtypes with CATCH before comparison increases our

ability to detect differentially expressed genes. In cross-disease comparisons among early stage neurodegenerative

microglia, only 17 common genes were found, significantly less than the 168 common genes found with our

pipeline. Of the common genes, only half of the activation signature was found (APOE, B2M, FTH1, FTL,

SPP1 ).

Similar to our coarse grained microglial comparison, we compared the strength of our approach in astrocytes.

After setting significance cutoffs based on our per gene q-values, we identified significantly fewer enriched genes

(221, 271, and 886) than we found with our analysis (1444, 680, and 2278 genes for AMD, AD and MS respectively)

(Supplementary Fig. 10b). In our cell type level analysis, only 28 common genes were found, significantly less

than the 630 common genes found with our pipeline. Of the common genes, only half of the activation signature

was found (AQP4, CD81, CRYAB, GFAP).

Collectively, these comparisons reveal the sensitivity of this discovery pipeline for finding gene signatures and

biologically meaningful relationships in noisy single cell gene expression data.

Other Computational Methods Details

Single-nucleus AMD RNA sequencing and pre-processing

snRNA-seq data from macular samples, were processed according to the following steps. Sample demultiplexing

and read alignment to the NCBI reference pre-mRNA GRCh38 was completed to map reads to both unspliced pre-

mRNA and mature mRNA transcripts using CellRanger version 3.1.0. Gene and cell matrices from retinas with dry

AMD (n=4), neovascular AMD (n=7), or controls with no known retinal disease (n=6) were then combined into

a single file. We prefiltered using parameters in scprep (v1.0.3, https://github.com/KrishnaswamyLab/scprep).

Cells that contained at least 1400 unique transcripts were kept for further analysis to generate a cell by gene matrix

containing 70,973 cells. Normalization was performed using default parameters with L1 normalization, adjusting

total library side of each cell to 1000. Any cell with greater than 200 normalized counts of mitochondrial mRNA

was removed. Batch correction was performed using Harmony (https://github.com/immunogenomics/harmony)

to align batch effects introduced by sequencing batch, postmortem interval, sample acquisition location and 10X

sequencing chemistry [83]. Raw data files for human snRNA-seq data will be available for download through

GEO under an accession number to be assigned with no restrictions on data availability.
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Single-nucleus AD and MS RNA sequencing pre-processing

snRNA-seq data for AD and MS was acquired from published sources [4, 5]. Cells that contained at least 1000

unique transcripts were kept for further analysis to generate a cell by gene matrix for each disease. Normalization

was performed using scprep default parameters with L1 normalization, adjusting total library side of each cell to

1000. Any cell with greater than 200 normalized counts of mitochondrial mRNA was removed. Batch correction

was performed on MS data using Harmony (https://github.com/immunogenomics/harmony) to align batch

effects introduced by sequencing batch, capture batch and sex.

Cell type identification with CATCH

All cell types were identified by performing topological activity analysis on the diffusion condensation calculated

condensation homology. In order to identify cell types, we identified a resolutions with no topological activity

which partitioned the cellular state space well and assigned each cluster to a cell type based on cell type specific

marker genes.

Interaction Analysis:

Cell–cell ligand-receptor analysis was conducted on pre-processed snRNA expression data using the CellPhoneDB

python package (https://github.com/Teichlab/cellphonedb, v2.1.4) [52]. Before conducting analysis, the package

database of 834 curated ligand-receptor combinations and multi-unit protein complexes was supplemented with

2557 ligand-receptor interactions found in the celltalker database (https://github.com/arc85/celltalker) [84].

The in-built database-generate function was utilized to update the existing database. Our comprehensive

user-generated database was invoked in each run of the CellPhoneDB statistical-analysis command function.

CellPhoneDB interaction maps were computed on differing inputs. First, disease phase enriched microglia and

astrocytes with subcluster identity were run to identify signaling interactions between astrocyte and microglial

activation states (Fig. 6B). The number of permutations was set to 2,000 and p-value threshold was set to 0.01.

Biological Methods Details

Human tissues

Postmortem eyes for the Chromium Single Cell 3’ assay and medical records containing AMD disease stage were

obtained from Advancing Sight Network (Alabama), Lions Gift of Sight Eye Bank (Minnesota), or the Yale

Department of Pathology with a maximum post-mortem interval of 13 hours. Globes were examined for retinal

disease by an ophthalmologist (B.P.H.) prior to dissection and dissociation of the samples. Retinas for snRNA-seq
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was obtained from the unrelated human post-mortem donors that included normal (n=6), intermediate dry on

AREDS2 (n=4), and neovascular AMD (n=7) stages (Supplementary Table 1). For each sample we profiled

the macula, which is the region of the retina responsible for central vision and affected most severely by AMD

pathology. We identified three intermediate AMD samples from patients taking the AREDS2 eye vitamin and

mineral supplement with drusen, a pathologic sign associated with the intermediate dry stage of the disease.

Eight postmortem AMD samples had neovascularization in the advanced stage of the disease. Normal donors

had no history of retinal disease. Additional clinical data for the subjects is given in Supplementary Table 2.

Retinal dissection and isolation of nuclei from frozen retinal tissue

Globes were placed in RNAlater (ThermoFisher) and transported on ice. Trephine punches (6 mm diameter)

were used to isolate samples from the macula in the central retina, located away from the optic disc and major

arterioles. For each punch of tissue, the retina was mechanically separated from the underlying retinal pigment

epithelium-choroid, snap-frozen on dry ice and stored at -80◦C. Nuclei were isolated and purified using the

Nuclei EZ Prep Nuclei Isolation Kit (Sigma), following the manufacturer’s protocol, with some modification. All

procedures were carried out on ice or at 4◦C. Briefly, frozen retinal tissue was subjected to dounce homogenization

(25 times with pestle A followed by 25 times with tight pestle B) using the KIMBLE Dounce Tissue Grinder Set

(Sigma) in 2ml EZ Lysis buffer. The sample was transferred to a 15ml tube with an additional 2ml EZ lysis

buffer and incubated on ice for 5min. Following incubation, the sample was centrifuged at 500xg, 5min at 4◦C.

Supernatants were discarded, and the isolated nuclei were resuspended in 4ml EZ lysis buffer, incubated for

5min on ice and centrifuged at 500xg for 5min at 4◦C. Next, the nuclei were washed with 4ml ice-cold Nuclei

Suspension Buffer (1X PBS containing 0.01% BSA and 0.1% RNase inhibitor), resuspended in 1ml Nuclei EZ

Storage buffer and passed through a 40μM nylon cell strainer. The nuclei suspensions were counted with trypan

blue prior to loading on the microfluidics platform.

Droplet-based microfluidics snRNA-seq

Isolated nuclei from each macular sample were processed through microfluidics-based single nuclear RNA-seq.

Single-cell libraries were prepared using the Chromium 3’ v2 and v3 platforms (10X Genomics) following the

manufacturer’s protocol. Briefly, single nuclei were partitioned into Gel beads in Emulsion in the 10X Chromium

Controller instrument followed by lysis and barcoded reverse transcription of RNA, amplification, shearing and 5’

adapter and sample index attachment. On average, 7000 nuclei were loaded on each channel that resulted in the

recovery of 4000 nuclei. Libraries were sequenced on the Illumina NextSeq 500 platform. Raw sequence data was
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aligned to GRCh38-3.0.0 human genome using STAR aligner, and Cell Ranger software (v3.1.0, 10X Genomics)

was used to demultiplex reads and assign read counts to individual cells. (After quality control preprocessing,

snRNA-seq profiles were used in subsequent analyses. This dataset was corrected for batch effects across samples

using the Harmony algorithm [83].

In situ RNA hybridization and immunofluorescence

To validate the gene expression differences, in situ hybridization was performed using RNAscope Multiplex

Fluorescent V2 Assay (Advanced Cell Diagnostics, Hayward, CA, USA). Macula dissected from whole human

globes were fixed in 4% paraformaldehyde (PFA) at 4◦C overnight. Tissues were sequentially dehydrated with

15% sucrose, then 30% sucrose before embedding in OCT, and frozen on dry ice. OCT molds were sectioned at 10

μm thickness. RNA in situ hybridization was performed according to the manufacturer’s protocol. Briefly, fixed

frozen sections were baked at 60◦C for 1 hr prior to incubation in 4% PFA for 10 mins and protease digestion

pretreatment. Target probes were hybridized to an HRP-based temperature sensitive signal amplification system,

followed by color development. Housekeeping genes POLR2A, PPIB, and UBC were used as internal-control

mRNA (Supplementary Fig. 7); if probes for these mRNAs were not visualized, the sample was regarded

as not available for gene expression study. The probes used include APOE, TYROBP, B2M, VEGFA, and

HIF1A (Advanced Cell Diagnostics, Hayward, CA, USA). The slides were counterstained with DAPI during

immunofluorescence protocol (see below). Positive staining was determined by fluorescent punctate dots in the

appropriate channels in the nucleus and/or cytoplasm. Following RNA in situ hybridization protocol, fixed

frozen sections were blocked with animal serum and incubated overnight at 4◦C with primary antibodies (see

antibody segment below). Secondary antibody incubation was for 1 hr at room temperature and cell nuclei were

counterstained with DAPI. Images were captured immediately using a confocal microscope (Zeiss LSM800, Jena,

Germany). The following antibodies against human antigens were used: GFAP (1:500, MA5-12023, Invitrogen)

and Iba1 (1:500, 019-19741, Fujifilm). Antibodies were visualized with Alexa Fluor 488 (1:200, A-11001 /

A-21208, Invitrogen).

Mice

Four- to-eight-week-old mixed sex C57BL/6 mice were purchased from the National Cancer Institute and

subsequently bred and housed at Yale University. All procedures used in this study (sex-matched, age-matched)

complied with federal guidelines and the institutional policies of the Yale School of Medicine Animal Care and

Use Committee (IACUC approved protocol #2022-20275) governing animal welfare and ethical treatment.
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Cells

IPSC-derived astrocyte cells were purchased from Brainxell.com (Catalog number BX-0600; Brainxell, Madison

Wisconsin). Cells were cultured according to provider’s guidelines using 1:1 DMEM/F12 and Neurobasal medium

with N2 supplement (1x), Glutamax (0.5mM), Astrocyte supplement (1x), Fetal bovine serum (1%).

Cell culture

IPSC-derived astrocyte cells were cultured to a fully differentiated state before cytokine stimulation. Cytokines,

(IL-1β, IL2, IL4, IL6, IL7, IL10, IL12, IL15, IL17, IL22, IL23, IFNG, TNF) were all purchased from PeproTech.com

(Peprotech, Cranbury, NJ). For single cytokine stimulation, cells were stimulated with each cytokine at a

concentration of 100ng/mL for 24 hours. For combinatorial cytokine stimulation, cocktail of all cytokines minus

cytokine of interest was made with each cytokine concentration at 50ng/mL. Cells were stimulated for 24 hours

before media was collected. Collected media was centrifuged at 1000xg to remove any cells and debris before

performing an ELISA.

Enzyme-linked immunosorbent assay

Enzyme-linked immunosorbent assay (ELISA) was performed using a mouse VEGF-A ELISA Kit (Cusabio LLC)

following the manufacturer’s instructions. Briefly, two wells in a PVC microtiter plate were coated with 100μl of

antigen (10μg/ml in PBS), after which the plate was sealed and incubated for 2 hours at room temperature.

Following three washes with PBS and application of blocking buffer (5% dry milk in PBS) the plate was resealed

and incubated for 2 hours a room temperature. The plate was washed twice with PBS, and anti-VEGF-A

antibody in blocking buffer was added to the wells. After another incubation for 2 hours at room temperature,

the plate was washed 5 times with PBS and 100μl of the substrate solution was added to the wells. Stop solution

was added to the wells and absorbance at 450nm was recorded in a plate reader.

Intravitreal injection

Mice were anaesthetized using a mixture of ketamine (50mg/kg) and xylazine (5mg/kg), injected intraperitoneally.

Mice eyes were sterilized using betadine. A small hole was made at the lateral aspect of the limbus was made

using a 33 gauge insulin syringe. Using a blunt end Hamilton syringe, 1 μl of PBS or IL-1β (100ng) was injected

at a 45 degree angle at the limbus intravitreally. Once the infusion was finished, syringe was left in place for a

minute before removal of the syringe. Injection site was washed with sterile PBS and puralube vet ointment was

applied to the eyes. Mice were monitored until full recovery.
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Mice tissue processing and microscopy

Retinas were dissected, fixed in 2% PFA for one hour and immediately processed in a blocking solution (10%

normal donkey serum, 1% bovine serum albumin, 0.3% PBS-Triton X-100) for overnight incubation at 4◦C. After

incubation, a subset of retinas for RPE imaging were bleached with treatment with 2 mL 30% H2O2 + 8 mL PBS

+ 2 NaOH pellets until optically cleared (30 min). Primary antibodies (VEGFA; Invitrogen cat# MA5-13812)

were applied and sections were incubated overnight at 4◦C, then washed five times at room temperature in PBS

and 0.5% Triton X-100, before incubation with a fluoro-conjugated secondary antibody diluted in PBS and 0.5%

Triton X-100 for 2 hours in room temperature. Sections were washed five times at room temperature, stained

with DAPI and mounted before imaging. Confocal images were taken on a Leica SP8 microscope. Quantitative

analysis was performed using either FIJI or ImageJ image-processing software (NIH or Bethesda) or Imaris 8

software (Oxford Instruments).

Statistics and Reproducibility

When two independent groups were compared, Welch t-test was used when unequal variances were assumed, and

Student’s t-test for presumed equal variance. All comparisons were made using two-tailed tests. Chi-square tests

were used for comparisons of proportions among two groups. In situ hybridization experiments (as represented

in Fig. 3G and Fig. 4G) were repeated twice in each case. When three or more independent groups were

compared, two-sided multinomial tests with multiple comparisons correction was used, where appropriate. Error

bars plotted on visualizations of means represent standard error of the mean. Differential expression analysis

as part of the CATCH algorithm includes a two-sided Earth Mover’s Distance, i.e. 1-D Wasserstein distance,

with significance cutoffs established based on per-gene false discovery rates (two-sided EMD test with FDR

corrected p-value < .1). In Fig. 3A 141 microgrlia were identified, with 30 found in healthy-enriched population,

32 found in the dry AMD-enriched population and 79 found in the wet neovascular AMD-enriched population.

In Fig. 4A, 474 astrocytes were identified with 301 found in the equally proportioned population, 22 found in

healthy-enriched population, 96 found in the dry AMD-enriched population and 55 found in the wet neovascular

AMD-enriched population.

In figures 3f and 4f, the box and whisker plots are defined as follows: the whiskers contain the inner 95%

confidence interval, the lower bound of the box is the 25% and upper bound the 75% of values. Finally, median

in the center of the box denotes the 50%. In this figure, and below, all values are reported in total normalized

gene expression values. In figure 3, microglial activation signatures are presented in microglia clusters across
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three neurodegenerative diseases. The AMD control-enriched microglia have a minima signature of 7.3, a lower

whisker of 7.5, a lower bound of 7.9, a median of 8.4, an upper bound of 8.8, an upper whisker of 9.0 and a

maxima of 9.4. The dry AMD disease-enriched microglia have a minima of 6.6, a lower whisker of 7.0 a lower

Bound of 8.3, a median of 9.2, an upper bound of 10.2, an upper whisker of 10.8 and a maxima of 11.9. In the

Alzheimer’s disease control-enriched cluster, this signature has a minima of 16.7, a lower whisker of 17.0, a lower

bound of 17.2, a median of 17.6, an upper bound of 18.2, an upper whisker of 19.0, and a maxima of 20.1. In the

early disease-enriched cluster, this signature has a minima of 16.3, a lower whisker of 17.7, a lower bound of

20.5, a median of 21.4, an upper bound of 23.2, an upper whisker of 24.2, and a maxima of 25.6. In the early

progressive control-enriched MS cluster, this signature has a minima of 11.7, a lower whisker of 12.5, a lower

bound of 13.2, a median of 13.8, an upper bound of 15.4, a upper whisker of 17.3 and a maxima of 17.7. In the

early progressive disease-enriched cluster, this signature has a minima of 15.4, a lower whisker of 15.5, a lower

bound of 17.9, a median of 19.0, an upper bound of 19.9, an upper whisker of 21.4 and a maxima of 21.6. In

figure 4, astrocyte activation signatures are presented for astrocyte clusters across all three diseases. The AMD

control-enriched astrocytes have a minima signature of 1.4, a lower whisker of 1.9, a lower bound of 2.5, a median

of 3.0, an upper bound of 3.4, an upper whisker of 4.3 and a maxima of 6.8. The dry AMD disease-enriched

astrocytes have a minima of 0.4, a lower whisker of 1.8, a lower bound of 2.5, a median of 3.1, an upper bound of

6.7, an upper whisker of 9.2, and a maxima of 10.8. In the Alzheimer’s disease control-enriched cluster, this

signature has a minima of 6.6, a lower whisker of 6.7, a lower bound of 8.8, a median of 9.3, an upper bound

of 10.1, an upper whisker of 12.5 and a maxima of 16.8. In the early disease-enriched cluster, this signature

has a minima of 6.4, a lower whisker of 6.5, a lower bound of 9.1, a median of 9.5, an upper bound of 11.3, an

upper whisker of 12.4, and a maxima of 14.1. In the early progressive MS control-enriched cluster, this signature

has a minima of 3.2, a lower whisker of 3.5, a lower bound of 4.6, a median of 5.3, an upper bound of 6.4, an

upper whisker of 7.9, and a maxima of 8.1. In the early progressive disease-enriched cluster, this signature has a

minima of 4.3, a lower whisker of 4.4, a lower bound of 6.4, a median of 7.0, an upper bound of 7.8, an upper

whisker of 9.4 and a maxima of 14.6.

Data Availability

Source data are provided as a Source Data file. Raw and processed data files for the snRNA-seq data used in

this study are available for download through GEO under the accession number GSE221042.

Data used in this study from [4] is available on The Rush Alzheimer’s Disease Center Research Resource Sharing
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Hub at https://www.radc.rush.edu/docs/omics.htm or at Synapse (https://www.synapse.org/#!Synapse:

syn18485175) under the doi 10.7303/syn18485175.

Data used in this study from [5] are available in the Sequence Read Archive (SRA) under accession number

PRJNA544731 (NCBI Bioproject ID: 544731) or at https://ms.cells.ucsc.edu.

Code Availablility

The CATCH package, as implemented in python, is available for download with a guided tutorial on the

Krishnaswamy Lab Github page: https://github.com/KrishnaswamyLab/CATCH.
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Figure Legends

Fig. 1: Overview of neurodegenerative disease processes and the topological diffusion condensation
approach. (A) Sketch of retina cross section showing layers and major cell types. (B) Illustration of the role of innate immune cells
in neurodegenerative disease pathogenesis. In the dry stage of AMD, there is accumulation of extracellular drusen debris between Bruch’s
membrane (BM) and the retinal pigment epithelium (RPE), leading to activation of glia. In the neovascular late-stage of AMD, VEGF-mediated
choroidal neovascularization (CNV) develops, which can lead to vision loss through rod and cone photoreceptor cell death. Accumulation of
extracellular plaques and intracellular neurofibrillary tangles in Alzheimer’s disease and myelin damage in progressive multiple sclerosis are both
accompanied by microglia (blue) and astrocyte (orange) activation. (C) Visual description of cellular condensation process undertaken by
diffusion condensation across four granularities. Points are moved to and merged with their nearest neighbors as determined by a weighted
random walk over the data graph. Over many successive iterations, cells collapse, denoting cluster identity at various iterations. (D) The
coarse graining process described in (C) creates hundreds of granularities of clusters which can be analyzed in meaningful ways: i) we can
visualize the hierarchy of clusters computed by diffusion condensation, to identify the merging behavior across granularities; ii) we can identify
meaningful, persistent partitions of the data by performing topological activity analysis; iii) in conjunction with MELD [9], we can scan across
these meaningful granularities to identify resolutions that optimally split disease-enriched populations of cells from healthy populations of cells
and finally; iv) we can compute differentially enriched genes between populations of interest.

47



Fig. 2: Single-nucleus RNA-seq profiling of the macula from human individuals with varying stages of AMD pathology. (A)
(left) Topological activity analysis of human retina single cell data across all condensation iterations. By computing gradients on topological
activity (see Methods), we identify three granularities at which persistent partitions of the data occur (represented by resolutions i, ii and iii),
and select them for downstream analysis. (right) Condensation process of AMD single cell data visualized across iterations (from bottom to top)
with the most coarse-grained granularity clusters visualized on PHATE embedding: resolution i. represents the most coarse-grained clusters and
resolution ii. represents the second most coarse-grained clusters. (B) Populations identified at the finest granularity identified by topological
activity analysis (resolution iii.) were visualized and all populations were assigned a cell type based on which cell type gene signature they
displayed the highest expression of. (C) Cell type specific genes visualized along with average normalized expression of known cell type specific
marker genes. All major retinal cell types were identified by CATCH process described in A-B. (D) Differentially expressed genes identified by
Wasserstein Earth Mover’s Distance (EMD) between cells from early-stage dry and late-stage neovascular AMD lesions and cells from control
retinas on a cell type specific basis. Number of significantly differentially expressed genes between control and AMD cells reported in a cell type
and stage specific manner (FDR corrected p-value < .1). Cell types sorted by most differential genes between dry AMD and control comparison.
Vascular cells, microglia and astrocytes have the most differentially expressed genes in dry AMD compared to control samples. (E) Bar chart
indicates the contribution of cell types in each cluster from control, dry AMD and neovascular AMD samples. Microglia and astrocytes are the
most statistically significantly enriched cell types in AMD, while rods and cones are the most depleted cell types in neovascular AMD. Vascular
cells are the most enriched cell type in the neovascular AMD condition. All statistics were computed using two-sided multinomial tests with
multiple comparisons correction (* = p < 0.1).

48



Fig. 3: Fine grain analysis of microglia reveals a shared activation signature enriched in the early phase of three different
neurodegenerative diseases. (A) 141 microglia identified by diffusion condensation at coarse granularity (upper left) can be further
subdivided into three clusters at fine granularity, each enriched for cells from a different disease-state. Disease state enrichment was calculated
using MELD (right) for each condition: Control (top), dry AMD (middle) and neovascular AMD (bottom), with higher MELD likelihoods
shown with darker colors. A resolution of the condensation homology which optimally isolated MELD likelihood scores from each condition
was identified using topological activity analysis. Microglia are revisualized using PHATE. (B) As in panel A, three subsets of 288 microglia
are found in AD with diffusion condensation and topological activity analysis, each enriched for cells from a different stage of pathology as
computed by MELD (right). Cells are revisualized with PHATE. (C) As in panel A, three subsets of 1263 microglia are found in MS with
diffusion condensation and topological activity analysis, each enriched for cells from a different stage of disease as computed by MELD (right).
Cells are revisualized with PHATE. (D) Differential expression analysis between control-enriched and early or acute active disease-enriched
microglia across neurodegenerative diseases reveals a shared activation pattern in early disease (increased expression of TYROBP, B2M,
APOE, CD74, SPP1, HLA-DR, C1QB, C1QC ). Significant differentially expressed genes are visualized in dark grey (two-sided EMD test
with FDR corrected p-value < .1 as described in methods). (E) Heatmap demonstrating differences in expression of the neurodegenerative
shared activation pattern and a homeostatic signature between control-enriched and early or acute active disease-enriched microglia across
neurodegenerative diseases. Color conventions are as in panels A-C. Rows correspond to genes and columns represent individual cells. We
have plotted 40 cells from each dataset selected through random sampling to reveal the difference between control-like and early disease-like
cellular states.(F, upper) Composite microglial activation signature for the neurodegenerative shared activation pattern in control-enriched and
early or acute active disease-enriched microglia across neurodegenerative diseases (y-axis - gene expression of signature). (F, lower) Disease
associated microglia (DAM) signature (from [7]) for control-enriched and early or acute active disease-enriched microglia across neurodegenerative
diseases. Color conventions are as in panels A-C (y-axis - gene expression of signature). Details on statistics are available in methods. (G)
Micrographs of combined in-situ RNA hybridization and IBA1 immunofluorescence demonstrating elevated expression of key components of the
neurodegenerative shared activation pattern (TYROBP and APOE) in IBA1-positive cells, a marker of microglia, from retinas with dry AMD
(right group) compared to control retinas (left group). All scale bars = 10μm. The average number of puncta identified per IBA1-positive cell
for TYROBP was 0.28±0.05 in dry AMD (n=191) vs. 0.02±0.01 for control (n=464; p < 1e-10; Chi-square test for 0 vs. >0). The average
number of puncta identified per IBA1-positive cell for APOE was 0.57±0.09 in dry AMD vs. 0.14±0.03 for control (p < 1e-08; Chi-square test
for 0 vs. >0).

49



Fig. 4: Fine grain analysis of astrocytes reveals a shared activation signature enriched in the early phase of neurodegenerative
diseases. (A) 474 astrocytes identified by diffusion condensation at coarse granularity (upper left) can be further subdivided into three clusters
at fine granularity, each enriched for cells from a different stage of neurodegenerative disease. Disease state enrichment was calculated using
MELD (right) for each condition: Control (top), dry AMD (middle) and neovascular AMD (bottom), with higher MELD likelihoods shown with
darker colors. A resolution of the condensation homology which optimally isolated MELD likelihood scores from each condition was identified
using topological activity analysis. Astrocytes are revisualized using PHATE. (B) As in panel A, three subsets of 2,361 astrocytes are found in
AD with diffusion condensation and topological activity analysis, each enriched for cells from a different stage of AD disease as computed by
MELD (right). Astrocytes are revisualized with PHATE. (C) As in panel A, three subsets of 5,469 astrocytes are found in MS with diffusion
condensation and topological activity analysis, each enriched for cells from a different stage of MS as computed by MELD (right). Astrocytes are
revisualized with PHATE. (D) Differential expression analysis between control-enriched and early stage of neurodegenerative disease-enriched
clusters across neurodegenerative diseases reveals a shared activation pattern in the early stage of disease. This signature includes B2M, CRYAB,
VIM, GFAP, AQP4, APOE, ITM2B, CD81, FTL. Significant differentially expressed genes visualized in dark grey (two-sided EMD test with
FDR corrected p-value < .1 as described in methods). (E) Heatmap demonstrating differences in astrocyte expression of the neurodegenerative
shared activation pattern and a homeostatic signature between control-enriched and early or acute active disease-enriched astrocytes across
neurodegenerative diseases. Color conventions are as in panels A-C. Rows correspond to genes and columns represent individual cells. We have
plotted 40 cells from each data-set selected through random sampling to reveal the difference between control-like and early disease-like cellular
states. (F) Composite astrocyte activation signature (top) and disease-associated astrocyte signature (DAA) for the neurodegenerative shared
activation pattern in control-enriched cluster and early disease-enriched cluster across neurodegenerative diseases. Color conventions are as in
panels A-C (y-axis - gene expression of signature). Details on statistics are available in methods. (G) Micrographs of combined in-situ RNA
hybridization and GFAP immunofluorescence showing more abundant B2M expression in astrocyte-rich retinal layers from dry AMD retina
when compared to control. All scale bars = 10μm. (H) Bar plot showing density of B2M transcripts in the astrocyte-rich inner plexiform layer,
retinal ganglion cell layer, and nerve fiber layers in retina samples affected by dry AMD (n=8 cells) and control (n=10 cells). Data are presented
as mean values ± SEM; * = p < 1e-03; Welch Two Sample t-test.
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Fig. 5: Cell-type specific changes in gene expression during AMD disease progression. (A) PHATE visualization of 46,783 nuclei
isolated from neovascular AMD and control retinas [65]. CATCH analysis identified a resolution of the condensation homology, which isolated
cell types. As in Figure 3, each cellular cluster was assigned a cell type identity based on which gene signature it expressed at the highest
level. (B) CATCH identified cell types, as shown by the average normalized expression of known cell type specific marker genes. (C) Disease
state enrichment was calculated using MELD (right) for each condition: Control (top), and neovascular AMD (bottom), with higher MELD
likelihoods shown with darker colors. A resolution of the condensation homology which optimally isolated MELD likelihood scores from each
condition was identified using topological activity analysis. Microglia are revisualized using PHATE. Two subsets of microglial cells, one enriched
for microglia from retinas with neovascular AMD and another from control retinas. (D) Differential expression analysis between control-enriched
and neovascular disease-enriched microglial clusters revealed a different activation pattern in late disease. Significant differentially expressed
genes visualized in dark grey (two-sided EMD test with FDR corrected p-value < .1 as described in methods). This signature includes NFKBIB,
IL1B, NOD2, FLT1, HSP90B1, RIPK2, NFKB1, HSP90AA1, HIF1A, BCL2L1, P2RX7, TAB2, HSP90AB1. (E) Disease state enrichment was
calculated using MELD (right) for each condition: Control (top) and neovascular AMD (bottom) with higher MELD likelihoods shown with
darker colors. A resolution of the condensation homology which optimally isolated MELD likelihood scores from each condition was identified
using topological activity analysis. Astrocytes are revisualized using PHATE. CATCH identified three subsets of astrocyte cells, one enriched
for astrocytes from neovascular retinas, another from control retinas and a third equally split between conditions. (F) Differential expression
analysis between the control-enriched and neovascular disease-enriched astrocyte clusters reveals a different activation pattern in late-stage
neovascular disease. Significant differentially expressed genes visualized in dark grey (two-sided EMD test with FDR corrected p-value < 0.1 as
described in Methods). This signature includes NR2E1, EPAS1, VEGFA, HIF1A, HIF3A.
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Fig. 6: Identifying cytokine regulators of astrocyte VEGFA secretion. (A) Interaction analysis between diffusion condensation
identified subtypes of astrocytes and neovascular-enriched microglia (detailed in Figure 5) computed with CellPhoneDB [52]. Interactions
between cytokines produced from neovascular-enriched microglia were computed against cytokine-receptors on astrocyte subtypes. Interactions
between specific cytokine-receptor pairs were added to produce a single cytokine interaction value for control and neovascular astrocyte subtypes.
(B) DREMI association analysis between astrocyte VEGFA expression, IL-1β signaling score, and IL-4 signaling score. Signaling scores for
IL-1β and IL-4 were computing by adding receptor expression of IL-1β and IL-4 respectively neovascular-enriched astrocytes from Figure 5. (C)
Conducted negative screen in human iPSC-derived astrocytes 24 hours after stimulation, subtracting one cytokine (e.g. ’negIL2’) from the
combinatorial pool to test its necessity in generating a VEGFA-producing astrocyte compared to vehicle control (ctrl). All represents stimulation
with a mixture of cytokines (IL-1β IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-15, IL-17, IL-22, IL-23, IFNγ, TNF). VEGFA protein is measured
using enzyme-linked immunosorbent assay (ELISA). Data were evaluated using one-way ANOVA with multiple comparisons correction using
Dunnetts. (D) Conducted single cytokine positive screen in human iPSC-derived astrocytes to test the sufficiency of each cytokine to stimulate
astrocyte VEGFA production. VEGFA protein levels are measured using ELISA 24 hours after stimulation with each cytokine compared to
vehicle control (ctrl). Data were evaluated using one-way ANOVA with multiple comparisons correction using Dunnetts. (E) IL-1β or PBS
was injected intravitreally into a mouse eye. Retinas were collected 72 hours later for immunofluorescent imaging. GCL: ganglion cell layer;
IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer. PBS = phosphate buffered saline
(control). Experiments were repeated at least three independent times with similar results. (F) Zoomed in images of regions indicated in E.
(G) Quantification of mean fluorescence intensity (MFI) of VEGFA after injection of IL-1β or PBS in the mouse eyes after 72 hours (left) and
quantification of amount of VEGFA and GFAP overlap in the ganglion cell layer of the mouse retina after injection of IL-1β or PBS (right). The
center of the error bars is the mean. A two-sided Student’s t-test was performed. **** represents p<0.0005. (H) Immunofluorescence imaging
of human post-mortem control and neovascular AMD retinas. Experiments were repeated at least three independent times with similar results.
(I) Quantification of IL-1β intensity in the ganglion cell layer (GCL) over the outer nuclear layer (ONL) of the retina from F. Data are presented
as mean values ± SEM; **** = P < 0.0005; two-tailed unpaired Student’s t-test.
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Supplementary Information

Supplementary Figures

Supplementary Fig. 1: Diffusion condensation identifies and characterizes populations of related cells across granularities.
(A) PHATE visualization of 10,000 cells generated from splatter [19]. Noiseless data is first generated on which ground truth clusters are
computed (left). Two types of biological noise, variation and drop out, are simulated and the dataset is revisualized with ground truth cluster
labels highlighted (right). (B) condensation homology visualization of noisy splatter single cell data simulation. Four granularities are highlighted
(represented as i.-iv.), illustrating 4 resolutions identified in (C) as meaningful. (C) Topological activity is first computed (left) before gradient
analysis is performed on the topological activity curve (right). Resolutions identified by this analysis as being meaningful are highlighted
(represented as i.-iv.). (D) Meaningful resolutions identified in (C) are represented with Adjusted Rand Index score when compared to ground
truth cluster labels shown. Visualizations are arranged from the coarsest granularity of clusters (left) to the finest granularity (right). (E) Forty
different splatter synthetic single cell datasets are simulated with either increasing amounts of drop out (left panel) or biological variation (right
panel). Cluster labels are computed using a range of multiresolution clustering techniques (CATCH, Louvain, Leiden, Seurat). The top four
most optimal resolutions from each algorithm are compared to ground truth cluster labels computed on noiseless data, with the highest Adjusted
Rand Index score saved. This is repeated 10 times using different random seeds for each algorithm. Shading represents 2 standard deviations
around the mean of each algorithm’s performance. At the highest levels of dropout and variational noise, CATCH performs significantly better
than Louvain, Leiden and Seurat (p < 0.05, ANOVA with post-hoc two-sided Student’s t-test with multiple comparisons correction). (F)
Condensation’s approximation Earth Mover’s Distance with an α- decay kernel shows superior fidelity with ground truth Earth Mover’s Distance
on 4,360 single cell PBMCs measured on the 10X platform. The diffusion condensation algorithm was implemented with α- decay (left panel)
and Gaussian (right panel) kernels. In each implementation, topological activity analysis identified persistent clustering granularities. For
this comparison, granularities with 20 or less clusters were analyzed by comparing all clusters to each other. This resulted in 10,166,640 and
2,541,660 comparisons for the α- decay kernel and Gaussian implementations respectively.
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Supplementary Fig. 2: Key advancements in CATCH clustering approach. (A) Ideal number of t-steps calculated by
spectral entropy per iteration when running diffusion condensation on 4,360 single cell PBMCs measured on the 10X platform. (B)
Comparison of different CATCH implementations on synthetic splatter data with increasing levels of noise. Comparing implementations
with fixed numbers of t steps set for every iteration (t=1,2,3) against the final diffusion condensation approach which uses spectral
entropy to tune t at every iteration. Adaptively tune t outperforms other implementations significantly as noise levels increase across
noise types (two-sided Student’s t-test, p < .05). (C) Visualization of difference between Gaussian and α-decay kernels. (D) Comparison
of differentially expressed genes using CATCH condensed transport implemented with Gaussian kernel and α-decay kernel against
ground truth 1D-Wasserstein EMD distance. In each comparison, CATCH was run on 10,000 cells generated from splatter as done
in part B. Topological activity analysis was used to compute salient granularities for downstream analysis. In each comparison, all
salient granularities with less than 20 clusters was used. At each granularity, we computed differentially expressed genes between
every combination of clusters. Across all comparisons, 10,249,140 and 4,535,640 comparisons for the Gaussian and α-decay kernel
implementations were computed respectively. (E) Comparing correlation between ground truth EMD values with condensed transport
values across granularities using the same multi-cluster and multi-granular comparison strategy described in (D). Visualizing reported
correlation values as a feature of cluster granularity (denoted by number of cluster on x-axis) for both Gaussian and α-decay kernels. (F)
Run time comparison between scalable and standard implementations of CATCH.
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Supplementary Fig. 3: Comparison of diffusion condensation against differing implementations and other clustering
approaches on synthetic and real single cell data (A) Comparison of CATCH, Louvain, Leiden and FlowSOM on flow cytometry
data with cluster labels have been identified through conventional gating analysis. Comparison was repeated on 1.3 million cells generated
from 30 patients in the FlowCAP dataset (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range;
points, all data; 2 sided T test without multiple hypothesis correction, p-value < .01). (B) Comparison of CATCH against multigranular
clustering approaches, Louvain and Leiden, on real single cell data across clustering granularity. (C) Diffusion condensation cluster
characterization implemented with α-decay and Gaussian kernels compared to ground truth cluster characterizations across granularities
on 4,360 PBMCs measured with 10X. (D) Comparing correlation between ground truth EMD values with condensed transport values
across granularities using the same multi-cluster and multi-granular comparison strategy described in S1F on 10X single-cell data.
Reported correlation values as a feature of cluster granularity (denoted by number of cluster on x-axis) for both Gaussian and α-decay
kernels, representing 12,061,332 and 3,373,476 comparisons respectively.

55



Supplementary Fig. 4: CATCH identifies known subtypes of bipolar cells across multiple levels of granularity. (A)
Cell type specific signatures based on composite normalized expression of cell type specific marker genes visualized on PHATE. (B)
CATCH identifies ON and OFF bipolar cell subsets at a granularity identified with topological activity analysis. (C) Finer grained
analysis of ON bipolar cells reveals known subsets. (D) Finer grained analysis of OFF bipolar cells reveals known subsets. (E) CATCH
reliably identifies established cell types, as shown by average normalized expression of known bipolar subset-specific marker genes.
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Supplementary Fig. 5: Louvain does not identify rare glial populations across granularities. (A) Visualization of 22
coarse grain clusters identified by Louvain. The identified populations are not able to identify all known cell types, as shown by the
average normalized expression of known cell type specific marker genes. (b) Visualization of 40 fine grain clusters identified by Louvain.
The identified populations at this granularity also do not resolve all known cell types, as shown by the average normalized expression of
known cell type specific marker genes.
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Supplementary Fig. 6:
CATCH analysis of AD and MS snRNAseq data reveals enrichment and activation of microglia and astrocytes in
disease. (A) 43,650 cells pooled from 48 AD patients and healthy donors. Samples were taken from disease free brain tissue and
diseased brain tissue at early and late pathological stages. All major cell types were identified by CATCH via persistence analysis and
visualized with PHATE [65]. Ideal CATCH granularity identified via topological activity analysis (right). (B) 46,796 cells pooled from 21
progressive MS patients and healthy donors. Samples were taken from disease free brain tissue and diseased brain tissue at acute and
chronic stages of inflammation. All major cell types were identified by CATCH via persistence analysis and visualized with PHATE [65].
Ideal CATCH granularity identified via topological activity analysis (right). (C) CATCH reliably identifies cell types in AD brain tissue,
as shown by average normalized expression of known cell type-specific marker genes. (D) CATCH reliably identifies cell types in MS
brain tissue, as shown by average normalized expression of known cell type-specific marker genes. (E) Microglia and astrocytes are the
most enriched cell types in AD using cross condition abundance analysis. (F) Microglia and astrocytes are significantly enriched in
progressive MS using cross condition abundance analysis. In E,F: * = p < 0.01, two-sided multinomial test with multiple comparisons
correction.
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Supplementary Fig. 7: Control probes for fluorescence in situ hybridization and validation of early activation
microglial signature in MS and AD. Representative images of fluorescence in situ hybridization for (A) positive control probe
(POL2RA labeled in red and UBC labeled in yellow) and (B) negative control probe (DapB labeled in yellow and red). (C) Representative
images of in situ RNA hybridization of APOE (labeled in turquoise), TYROBP (labeled in pink) with simultaneous immunofluorescence
of microglial marker IBA1 (white). Elevated expression of APOE and TYROBP is seen in IBA1-positive cells in microglia from brain
tissue with early AD and early progressive MS, compared to healthy controls. Each row represents a sample from a different case. All
scale bars = 10μm.
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Supplementary Fig. 8: IL-1β injection affects expression of VEGFA in neurosensory retina cells and retinal
pigment epithelium. IL-1β (n=4) or PBS (n=4) was injected intravitreally into mouse eyes. Retinas were collected 72 hours later
for immunofluorescent imaging of sections stained with anti-VEGFA fluorescent antibody following peroxide bleaching of endogenous
pigment. (A) Quantification of corrected total cell fluorescence (CTCF) in n=60 manually segmented cells after injection of IL-1β or
PBS control in the mouse eyes after 72 hours in cells residing in the neurosensory retina (left) or retinal pigment epithelium (RPE; right).
Bar heights represent means; error bars represent standard error of the mean (SEM). * = p < 0.5; two-sided student’s t-test; Two-way
ANOVA revealed no significant differences between neurosensory and RPE VEGFA expression in either condition. (B) and (C) Example
fluorescence micrographs of retinas exposed to IL-1β or PBS control, respectively; scale bars = 50μm.
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Supplementary Fig. 9: Shared activation signatures is diminished in advanced disease and replaced with disease-
specific stress signature in microglia. (A) Comparing advanced or chronic inactive disease-enriched microglial cluster to early or acute
active-enriched microglial cluster reveals a significant reduction in the microglial activation signature in later stages of neurodegeneration.
Significant differentially expressed genes visualized in dark grey (two-sided EMD test with FDR corrected p-value < .1 as described in
methods) and shared gene signature shown in red. (B) Comparing advanced or chronic inactive disease-enriched astrocyte cluster to early
or acute active-enriched cluster reveals a significant reduction in the astrocyte activation signature in later stages of neurodegeneration.
Significant differentially expressed genes visualized in dark grey (two-sided EMD test with FDR corrected p-value < .1 as described in
methods) and shared gene signature shown in red.
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Supplementary Fig. 10: Cell type level differential expression analysis at coarse granularity across neurodegenerative
diseases. (A) Performing EMD-based differential expression analysis between microglia which originate from dry AMD patients and
control subjects identified a gene signature enriched in the early stage of dry AMD. By performing similar differential expression analysis
between microglia from brain samples from patients with early AD, acute active MS, and controls, we identified a shared activation
signature of 17 genes. This common signature includes APOE, SPP1 and B2M while all other genes are highlighted in red. Significant
differentially expressed genes visualized in dark grey (two-sided EMD test with FDR corrected p-value < .1 as described in methods).
(B) Performing EMD-based differential expression analysis between astrocytes which originate from dry AMD patients and control
subjects identified a gene signature enriched in the early stage of dry AMD. By performing similar differential expression analysis between
astrocytes from control and early AD samples and control and acute inflammation MS samples, we identify a shared activation signature
of 28 genes. This common signature includes GFAP, AQP4, and CRYAB while all other genes are highlighted in red. Significant
differentially expressed genes visualized in dark grey (two-sided EMD test with FDR corrected p-value < .1 as described in methods).
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Supplementary Tables

Retina Sex Age Postmortem
Interval (Hrs) Left/Right Eye Condition Assay

1 F 90 2 Right Control snRNA-seq
2 F 81 4 Left Control snRNA-seq
3 M 65 8 Left Control snRNA-seq
4 M 78 4 Left Control snRNA-seq
5 F 72 4 Left Control snRNA-seq
6 M 85 3 Right Control snRNA-seq
7 M 84 9 Left Intermediate Dry AMD snRNA-seq
8 M 72 3 Left Intermediate Dry AMD snRNA-seq
9 F 82 4 Right Intermediate Dry AMD snRNA-seq
10 M 87 2 Right Intermediate Dry AMD snRNA-seq
11 F 67 2 Left Neovascular AMD snRNA-seq
12 F 79 10 Right Neovascular AMD snRNA-seq
13 F 100 9 Left Neovascular AMD snRNA-seq
14 F 93 8 Right Neovascular AMD snRNA-seq
15 F 94 13 Left Neovascular AMD snRNA-seq
16 F 76 9 Left Neovascular AMD snRNA-seq
17 F 74 5 Right Neovascular AMD snRNA-seq

Supplementary Table 1: Human retinal specimen details.
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Subject Sex Age Smoking
History

1 F 90 No
2 F 81 Unk.
3 M 65 No
4 M 78 No
5 F 72 No
6 M 85 No

7 M 84 Former
smoker

8 M 72 No
9 F 82 No

10 M 87 Former
smoker

11 F 67 Yes
12 F 79 Unk.
13 F 100 Unk.
14 F 93 Unk.
15 F 94 Unk.
16 F 76 No
17 F 74 No

Supplementary Table 2: Human subject clinical information. ‘Unk.’ = Data not present in available
records.
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Retina Sex Age Postmortem
Interval (Hrs) Cells post QC UMI/Cell Genes/Cell

1 F 90 2 3069 6704 2545
2 F 81 4 3019 9107 2865
3 M 65 8 3934 10819 3005
4 M 78 4 1182 5255 2270
5 F 72 4 4085 5923 2281
6 M 85 3 1321 3052 1670
7 M 84 9 7848 5652 2360
8 M 72 3 6311 9587 3298
9 F 82 4 4814 6087 2415
10 M 87 2 5129 4154 1500
11 F 67 2 1533 9609 3152
12 F 79 10 3465 4989 2084
13 F 100 9 5349 8565 2887
14 F 93 8 4568 8708 3239
15 F 94 13 281 2187 1378
16 F 76 9 7476 6408 2658
17 F 74 5 6112 6321 2234

Supplementary Table 3: Human retinal specimen details.
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