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Physicians and researchers have long examined cellular structures and 
molecular composition using diffraction-limited microscopy to diag-
nose or investigate the pathogenesis of a wide variety of predisease 
and disease states. Biomolecules themselves, however, are nanoscale 
in dimension and configured with nanoscale precision throughout 
cells and tissues. This organization has begun to be explored in basic 
science using pioneering super-resolution microscopy methods1–4 
as well as electron microscopy (EM)5–7; but such methods require 
complex hardware, can present a steep learning curve and are dif-
ficult to apply to large-scale human tissues. Accordingly, super-
resolution imaging and nanoscopy have not found routine utility in  
clinical practice and are rarely applied to clinical samples, even in a 
research context.

Recently, we developed a strategy for imaging large-scale cell and 
tissue samples by physically, rather than optically, magnifying them8. 
In this strategy, ExM, we isotropically expand tissues by embedding 
them in a dense swellable polymer (e.g., a mesh of sodium polyacr-
ylate synthesized evenly throughout a tissue) that binds key biomol-
ecules or fluorescent labels to the polymer network. Samples are then 
mechanically homogenized and swelled, so that they can be imaged 
with nanoscale (~70 nm) resolution on conventional diffraction-
limited microscopes. Although the original version of ExM required 
synthesis of a linker to couple fluorescent labels to the polymer, 

we recently developed protein retention ExM (proExM), a version  
of ExM that uses a commercially available anchoring molecule to 
tie proteins (such as fluorophore-bearing antibodies) directly to the 
swellable polymer9.

Here, we report a clinically optimized form of proExM, ExPath, which 
can process most types of clinical samples currently used in pathology, 
including formalin-fixed paraffin-embedded (FFPE), hematoxylin and 
eosin (H&E)-stained and fresh-frozen human tissue specimens on glass 
slides. We explore ExPath’s ability to enable nanoscale imaging on a wide 
variety of tissue samples from different human organs and disease states. 
In a small-scale study, we show that diseases (such as kidney minimal 
change disease (MCD)10) that previously required EM for diagnosis  
can now be directly and accurately diagnosed with ExPath and conven-
tional diffraction-limited light microscopy. As another example, we used 
ExPath to analyze nuclear atypia of early breast neoplastic lesions for 
which pathologists often disagree in classification11, and we show that 
ExPath facilitates computational pathology differentiation of hard-to-
diagnose subtypes of these lesions. We anticipate that ExPath will have 
broad utility in enabling probing of nanoscale features at the genomic, 
protein and cell-morphology levels. ExPath will enhance the diagnostic 
power available to pathologists without requiring investment in novel 
hardware. We also expect the method will be useful for providing  
insights into the pathogenesis of various human diseases.
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RESULTS
Clinical samples and pathology-optimized expansion 
microscopy
We first devised a series of steps to convert clinical samples to a state 
optimized for ExM processing (Fig. 1 and Supplementary Fig. 1).  
We considered three starting tissue states—FFPE, H&E stained and 

fresh frozen; we assumed the tissue to be thin sliced and on a glass 
slide. We first investigated FFPE samples, since we hypothesized that 
the steps (e.g., xylene treatment, rehydration and antigen retrieval) 
required for converting tissues in the other categories would be sub-
sets or permutations of the steps required for FFPE tissue processing. 
We evaluated whether xylene treatment to remove paraffin, followed 
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Figure 1  Design and validation of expansion pathology (ExPath) chemical processing. (a) Schematic of ExPath workflow (details in Supplementary  
Fig. 1). (b) Pre-expansion image of a 1.5-mm core of normal human breast tissue acquired with a wide-field epifluorescent microscope. Blue, DAPI; 
green, vimentin; magenta, voltage-dependent anion channel (VDAC). (c) Postexpansion (i.e., ExPath) wide-field fluorescence image of the sample 
of b. (d,e) Root mean square (RMS) length measurement error as a function of measurement length for pre-expansion versus postexpansion images 
(blue solid line, mean of DAPI channel; green solid line, mean of vimentin channel; shaded area, standard error of mean; n = 3 samples from different 
patients; average expansion factor, 4.3 (s.d. 0.3)). (f) Super-resolution structured illumination microscopy (SR-SIM) image of normal human breast 
tissue. Blue, DAPI; green, vimentin; magenta, keratin-19 (KRT19). (g) ExPath image of the sample in f acquired with a spinning disk confocal 
microscope. (h,i) RMS length measurement error as a function of measurement length for ExPath versus SIM images of human breast tissue (blue solid 
line, mean of DAPI channel; magenta solid line, mean of KRT19 channel; shaded area, standard error of mean; n = 5 fields of view from samples from 
four different patients; average expansion factor, 4.0 (s.d. 0.2)). (j) Hematoxylin and eosin (H&E)-stained human breast sample with atypical ductal 
hyperplasia (ADH). Inset (upper left) is a magnified view of the area framed by the small square at right. (k) ExPath wide-field fluorescence image of 
the sample in j stained with antibodies against Hsp60 (magenta) and vimentin (green) and with DAPI (blue). (l) ExPath wide-field fluorescence image 
of a human breast cancer sample without HER2 amplification. Blue, anti-HER2 (not visible); gray, DAPI; green, DNA FISH against chromosome 17 
centrosome; magenta, DNA FISH against HER2. (m) ExPath wide-field fluorescence image of a human breast cancer sample with HER2 amplification, 
stained as in l. Scale bars (yellow scale bars indicate postexpansion images): (b) 200 µm; (c) 220 µm (physical size postexpansion, 900 µm; expansion 
factor, 4.1); (f) 10 µm; (g) 10 µm (physical size postexpansion, 43 µm, expansion factor, 4.3); (j) 5 µm, inset 1 µm; (k) 5 µm, inset 1 µm (physical size 
postexpansion, 23 µm; inset, 4.6 µm; expansion factor, 4.6); (l) and (m), physical size postexpansion 20 µm.

©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



nature biotechnology  VOLUME 35  NUMBER 8  AUGUST 2017	 759

A rt i c l e s

by rehydration and a fairly standard antigen-retrieval step (placing 
samples in 20 mM sodium citrate at pH 8 and 100 °C, then imme-
diately transferring the samples into a 60 °C incubator for 30 min; 
Supplementary Fig. 1), could sufficiently prepare FFPE samples for 
the proExM protocol9. In proExM, the succinimidyl ester of 6-((Ac
ryloyl)amino)hexanoic acid (Acryloyl-X, SE; here abbreviated AcX) 
is used to chemically modify amines on biomolecules with an acryla-
mide functional group, and this modification enables proteins to be 
linked to the polymer network; then, polymerization followed by pro-
teinase K digestion (to an extent that spares the proteins of interest, 
e.g., applied antibodies) and addition of water enables expansion.

We found that heavily formalin-fixed human tissues (e.g., lymph 
nodes, skin and liver) did not expand evenly under the proExM pro-
tocol, even after paraffin removal; but if digestion was performed with 
25 mM EDTA versus the 1 mM EDTA used in the original proExM 
protocol, we obtained excellent isotropic expansion with low autofluo-
rescence (Supplementary Note; Supplementary Tables 1 and 2; and 
Supplementary Fig. 2a–j). We validated the low distortion obtained 
by using this protocol on cultured cells using super-resolution struc-
tured-illumination (SR-SIM) microscopy pre-expansion and confocal 
microscopy postexpansion (Supplementary Fig. 3). We next validated 

that this FFPE pipeline, with xylene treatment and increased EDTA, 
could prepare samples for proExM by assessing the entire pipeline on 
normal human breast tissues prepared with FFPE preservation. We 
found that pre-expansion imaging with either a wide-field (Fig. 1b) or 
SR-SIM (Fig. 1f) microscope followed by postexpansion imaging on 
a wide-field (Fig. 1c) or confocal (Fig. 1g) microscope, respectively, 
yielded low distortion levels of a few percent over lengthscales of tens 
to hundreds of microns (Fig. 1d,e,h,i), similar to the low distortion 
levels obtained by earlier ExM protocols8,9. Thus, this ExPath protocol 
expanded paraffin-embedded, highly aldehyde-fixed samples.

We next sought to prepare H&E-stained samples for our enhanced 
proExM protocol. For mounted samples, we had to remove the cov-
erslip and mounting medium; since we had established that xylene 
treatment was acceptable as a pretreatment for ExM, we used 
xylene to remove the coverslip and dissolve the mounting medium 
(Supplementary Fig. 1). H&E-stained tissues exhibited high back-
ground fluorescence (Supplementary Fig. 4), which suggested that 
H&E removal would be important for fluorescent antibody stain-
ing. We found that both eosin and hematoxylin stains were removed 
by ExPath processing (Supplementary Figs. 1 and 4). We visual-
ized nuclear DNA in postexpansion H&E-stained samples by DAPI 
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Figure 2  ExPath reduction of tissue autofluorescence. (a–j) Wide-field images of normal human lung tissue labeled with DAPI (gray) and antibodies 
against ACTA2 (blue), vimentin (green), and KRT19 (magenta), showing pre-expansion (a–e) and postexpansion (f–j) data. (k–p) Confocal images of 
normal human breast tissue labeled with DAPI (blue) and antibodies against vimentin (green) and KRT19 (magenta), showing pre-expansion (k–m) and 
postexpansion (n–p) data. (q) Signal-to-background ratio for pre-expansion (magenta) as well as postexpansion (green) states of n = 3 samples of breast 
tissue from three patients. Average expansion factor, 4.1 (s.d. 0.1). **P < 0.01; *P < 0.1, two-tailed paired t-test. The ends of whiskers are defined 
by the s.d.; the upper and lower boundaries of the box are defined by the maximum and minimum, respectively; the segment in the rectangle indicates 
the median; the square symbol indicates the mean. Scale bars (yellow scale bars indicate postexpansion images): (e) 45 µm; (j) 45 µm (physical size 
postexpansion, 208 µm; expansion factor 4.6); (k–m) 5 µm; (n–p) 5 µm (physical size postexpansion, 18 µm; expansion factor 4.0).
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staining (Fig. 1j,k), and we applied antibody stains against the mito-
chondrial protein Hsp60 and stromal marker vimentin using an 
H&E slide of human breast tissue with atypical ductal hyperplasia 
(ADH). Finally, we evaluated fresh-frozen sections preserved with 
acetone fixation; we found that lowering the concentration of AcX 
from 0.1 mg/mL to 0.03 mg/mL enabled more consistent and artifact-
free expansion of acetone-fixed samples (Supplementary Fig. 2k,l), 
perhaps because of the greater number of free amines in tissues not 
processed with aldehyde fixatives.

DNA fluorescent in situ hybridization (FISH) is commonly used to 
assess ERBB2 (HER2) gene amplification in breast cancer. We recently 
developed a method for expanding RNAs away from each other in 
biological samples and then accurately imaging their identity and 
location with RNA FISH12; here, we examined whether postexpan-
sion DNA FISH was possible. The large size of traditional bacterial 
artificial chromosome (BAC)-based FISH probes (the length of 
BAC-based FISH probes targeting HER2 is approximately 220 kb)  
precludes efficient delivery to expanded samples, so we used com-
mercially available SureFISH probes, which are libraries of single-
stranded oligonucleotides with an average size of ~150 bases13,  
targeting HER2 and (as a control) the centrosome of chromosome 17.  
We observed that SureFISH probes diffused into breast ExPath 
samples and hybridized with chromosomal DNA for specimens of 
breast cancers with no amplification of HER2 (Fig. 1l) and for breast 
cancers with HER2 amplification (Fig. 1m); more DNA hybridi-
zation was apparent in the HER2-amplified case. As DNA FISH is 
performed in the final step of the process, it does not interfere with 
immunostaining earlier in the protocol. We costained the breast  
samples with an antibody against HER2 protein, and we confirmed 
the correlation of HER2 protein expression with HER2 gene ampli-
fication (Fig. 1l,m).

Because ExPath spaces molecules apart and results in elimination 
of unanchored or digested molecules (such as nonantibody proteins 
that are digested by proteinase K treatment), this technique has several 
advantages over conventional immunostaining. For example, tissue 
autofluorescence remains challenging for clinical applications of immun-
ofluorescence and FISH in pathology analysis, despite existing autoflu-
orescence reduction methods14–16. Specimens processed with ExPath 
are >99% water and are thus transparent and refractive-index matched 
to water. We observed substantially reduced autofluorescence from 
lung (Fig. 2a–j, wide-field fluorescence images) and breast (Fig. 2k–p,  
confocal fluorescence images) ExPath-processed specimens when we 
compared signal-to-background ratios (from regions selected by a 
pathologist’s visual inspection) in spectral channels ranging from UV 
to red (Fig. 2q, n = 3 normal breast samples from different patients). 
Thus, the molecular clearing of ExPath, which eliminates unanchored 
biomolecules (potentially including both proteins and small molecules) 
that contribute to autofluorescence, can reduce autofluorescence by an 
order of magnitude in some spectral channels.

We applied ExPath to tissue microarrays containing specimens 
from various organs, including normal and cancer-containing tis-
sues from breast, prostate, lung, colon, pancreas, kidney, liver and 
ovary (Fig. 3); in all cases we obtained expansions of ~4–5×, with an 
average expansion factor of 4.7 (s.d. 0.2; Supplementary Table 3). The 
expansion variation for the specimens noted above was smaller than 
10%, which indicates consistent expansion performance across dif-
ferent types of human tissue. ExPath revealed sub-diffraction-limit-
sized features of the intermediate filaments keratin and vimentin, 
which are critical in the epithelial–mesenchymal transition17, cancer 
progression and initiation of metastasis18 (Fig. 3). An interesting 
future direction for ExPath will be the examination of the nanoscale  

architecture of these and other proteins in the cellular and tissue con-
text of cancer. We anticipate that ExPath will provide a simple and 
convenient way to observe nanoscale morphology of both nucleic 

Normal (human)

Core Pre Post Core Pre Post

Cancer (human)

P
ro

st
at

e
Lu

ng
B

re
as

t
P

an
cr

ea
s

O
va

ry
Li

ve
r

K
id

ne
y

C
ol

on

Figure 3  ExPath imaging of a wide range of human tissue types. Images 
of various tissue types for both normal (left images) and cancerous (right 
images) tissues from human patients. From top to bottom, different rows 
show different tissue types as labeled (e.g., prostate, lung, breast, etc.). 
Within each block of images for a given tissue x disease type, there are five 
images shown. The left-most of the five images shows a core from a tissue 
microarray (scale bar, 200 µm). The middle column within the five images 
shows two images, the top of which is a small field of view (scale bar, 
10 µm), and the bottom of which zooms into the area outlined in the top 
image by a white box (scale bar, 2.5 µm). The right column within the five 
images shows the same fields of view as are shown in the middle column, 
but postexpansion (yellow scale bars: top images, 10–12.5 µm; bottom 
images, 2.5–3.1 µm. Physical size postexpansion: top images, 50 µm; 
bottom images, 12.5 µm; expansion factors 4.0–5.0×; see Supplementary 
Table 3 for raw data). Blue, DAPI; green, vimentin; magenta, KRT19.
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acids and protein biomarkers in clinical biopsy samples from a wide 
range of human organs.

Expansion pathology enables visualization of human podocyte 
tertiary foot processes
Many potential uses of ExPath will likely be discovered by future explo-
ration of normal versus abnormal samples followed by traditional or 
automated inspection of key features for both pinpointing novel patho-
logical mechanisms and for disease classification and refined diagno-
sis. However, there are some scenarios where nanoscopic resolution 
is already necessary. For example, nephrotic kidney diseases such as 
MCD and focal segmental glomerulosclerosis (FSGS) are typically diag-
nosed or confirmed via EM19,20. In MCD, kidney tertiary podocyte foot 
processes, which normally cover the surface of glomerular capillary 
loops like interdigitating fingers, lose their characteristic morphology 
and appear continuous under EM—a phenomenon called foot process 
effacement10. The width of individual foot processes is around 200 nm, 
which is beyond the resolution of conventional optical microscopy21.

Here, we explored whether ExPath could enable imaging of podo-
cyte foot processes (Fig. 4). We identified both an anti-actinin-4 

(ref. 22) and an anti-synaptopodin23 antibody, each of which could 
specifically label tertiary podocyte foot processes in acetone-fixed 
frozen kidney samples that were heat treated before immunostaining 
(Supplementary Figs. 5 and 6). Compared with the immunostain-
ing quality of acetone-fixed frozen kidney samples, that of FFPE-
preserved samples decreased slightly for anti-actinin-4 staining 
(Supplementary Fig. 7)—a difference that was presumably a result 
of degraded actinin-4 antigenicity caused by formalin. We stained 
human kidney samples with anti-actinin-4, antibodies against vimen-
tin (a glomerular marker) and collagen IV (a capillary basement 
membrane marker); and we successfully observed the microanatomy 
of glomeruli in normal human kidney samples (Fig. 4a,b) postexpan-
sion, revealing ultrafine structures of tertiary podocyte foot processes 
(Fig. 4b,c) not visible in confocal imaging (Fig. 4a). We acquired 
ExPath images of fresh-frozen kidney sections from individuals with 
normal kidneys as well as from patients with MCD and FSGS. We 
observed the ultrafine structure of tertiary foot processes in kidneys 
from normal cases (Fig. 4e) and foot process effacement in MCD 
cases (Fig. 4g), consistent with the morphologies seen in EM images 
from the same samples (Fig. 4d,f). Thus, with ExPath, nanoscale  
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Figure 4  ExPath analysis of kidney podocyte foot process effacement. (a) Pre-expansion confocal image of a normal human kidney sample showing 
part of a glomerulus acquired with a spinning disk confocal microscope. Blue, vimentin; green, actinin-4; magenta, collagen IV; gray, DAPI. Orange 
line indicates the line cut analyzed in c. (b) ExPath image of the sample in a using the same microscope. Red line indicates the line cut analyzed in c. 
(c) Profiles of actinin-4 intensity along the orange and Red dotted lines of a and b. (d) Electron micrograph of a clinical biopsy sample from a normal 
human kidney. Inset, zoom into the region outlined by the black box; dotted line within the inset indicates the line cut analyzed in the graph below the 
image. Below, electron micrograph feature intensity along the line cut of the inset, normalized to maximum intensity (Norm. I.).  
(e) ExPath image of a clinical kidney biopsy sample from the same patient analyzed in d, stained as in a. Inset, zoom into the region outlined by the 
white box; dotted line within the inset indicates the line cut analyzed below. Below, actinin-4 intensity along the line cut of the inset, normalized 
as in d. (f) As in d, but for a patient with minimal change disease (MCD). (g) As in e, but for the same patient as in f. Scale bars (yellow indicates a 
postexpansion image): (a) 5 µm; (b) 5 µm (physical size postexpansion, 23.5 µm; expansion factor, 4.7); (d) 1 µm; inset, 200 nm; (e) 1 µm (physical 
size postexpansion, 4.3 µm; expansion factor, 4.3); inset, 200 nm; (f) 1 µm, inset, 200 nm; (g) 1 µm (physical size postexpansion, 4.2 µm; expansion 
factor, 4.2); inset, 200 nm.
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differences between clinical samples of nephrotic diseases can be visu-
alized with diffraction-limited optical microscopes.

To examine in a blinded study whether ExPath could enable accu-
rate identification of foot process effacement in MCD and FSGS 
cases, seven observers—four pathologists and three nonpatholo-
gists—first studied a training set of immunofluorescence images of 
kidney glomeruli in both pre-expansion and postexpansion states 
(see full image set in Supplementary Fig. 8); then they examined ten 
pre-expansion and ten postexpansion immunofluorescence images 
of kidney glomeruli from three specimens from normal subjects, 
two specimens from MCD patients and one specimen from an FSGS 
patient (Supplementary Fig. 8 and Supplementary Table 4). For 
unexpanded samples, classification accuracy was only 65.7% (s.d. 
17%), but accuracy increased significantly to 90% (s.d. 8%) when 
ExPath samples were used (P = 0.0088, n = 7 individuals, two-tailed 
t-test; raw data in Supplementary Table 5). To assess interobserver 
agreement, we calculated Fleiss’s kappa values for observers’ cat-
egorical ratings on pre-expansion versus postexpansion images. 
Observers’ ratings of postexpansion data were in substantial agree-
ment, with kappa value 0.68 ± 0.14 at the 95% confidence level; 
whereas interobserver agreement was poor on pre-expansion data 
(0.35 ± 0.13, 95% confidence level; this value was borderline, given 
the clinically acceptable threshold of 0.40)24. ExPath enabled accu-
rate and consistent evaluation between observers on whether the 
image was from a sample in a normal or abnormal state from a 
single postexpansion image (in clinical practice, kidney pathologists 
normally examine multiple EM images for diagnosis). Large-scale 
blinded studies using ExPath—although these are beyond the scope 
of the current technology-oriented paper—will be required to deter-
mine whether ExPath can streamline the diagnosis or confirmation 

of nephrotic kidney disease and other diseases that involve known 
nanoscale pathology.

Expansion pathology improves computational diagnosis in 
early breast lesions
To further explore the utility of ExPath, we examined the pathological 
classification of early breast lesions, which represents one of the most 
challenging problem areas in breast pathology11. For example, one 
study has shown that there is only ~50% agreement between patholo-
gists for nuclear atypia diagnosis in early breast lesions11. The classifi-
cation of these lesions provides diagnostic information that is critical 
for preventing overtreatment and undertreatment and for guiding 
clinical management25,26.

We hypothesized that the problems with the current classification 
schemes are due to two issues—first, the diagnostic criteria are largely 
qualitative and subjective; second, the information contained in the 
images is limited by the optical diffraction limit of conventional optical 
microscopes. To start addressing the first issue, we previously devel-
oped computational pathology models that can discriminate benign 
from malignant intraductal proliferative breast lesions27. However, the 
efficacy of these models is limited by the information extractable from 
diffraction-limited images. Because ExPath substantially increases 
image resolution, we anticipated that the extra information made 
accessible by ExPath could lead to a higher quality of extracted features 
and thus improve the classification of preinvasive breast lesions.

We applied our previously developed image classification frame-
work27 to ordinary H&E-stained samples, and we applied an image 
classification framework updated with nucleus detection and segmen-
tation algorithms optimized for postexpansion DAPI-stained images 
(Fig. 5a) to expanded samples. Our image classification framework 
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Figure 5  ExPath improvement of computational diagnosis of early breast lesions. (a) Automated nucleus segmentation framework, showing steps of the 
image preprocessing and nuclei segmentation pipeline. From left to right, noise removal using rolling-ball correction, enhancing contrast by histogram 
equalization, nucleus segmentation by minimum error thresholding, seed detection by multiscale Laplacian of Gaussian (LoG) filter, nuclei splitting by 
marker-controlled watershed. (b) Computational detection and segmentation of nuclei is significantly more accurate in expanded versus pre-expanded 
samples; example of atypical ductal hyperplasia (ADH). For the “Expert annotation” and “Automated segmentation” columns, green-filled nuclei are 
nuclei segmented by the expert or the automated segmentation algorithm, respectively (red circles indicate nucleus outlines, which are not visible in the 
ExPath row because the resolution is too high, and thus the outline is barely visible). In the “automated vs. ground truth” column, green-filled nuclei, 
true positives; red-filled nuclei, false negatives; blue-filled nuclei, false positives (note that when the automated segmentation yielded larger outlines 
than the expert, this was expressed as a blue ‘halo’ around the green). (c) Classification models were built using L1-regularized logistic regression (the 
GLMNET classifier). Classification accuracy was measured as the area under the receiver operator curve (AUC) achieved by the classification model 
in cross-validation. We applied this image classification framework on both pre-expanded H&E and postexpanded DAPI images for computational 
differentiation of normal, benign and preinvasive malignant breast diseases. Both data sets consisted of 105 images that contained 36 normal breast 
tissue images, 31 benign breast tissue images (15 UDH and 16 ADH) and 38 noninvasive breast cancer tissue images (DCIS). Average expansion factor, 
4.8 (s.d. 0.3). *P < 0.05; bootstrapped paired t-test. P value for each binary comparison: normal versus UDH, 0.17; normal versus ADH, 0.34; normal 
versus DCIS, 0.24; UDH versus ADH, 0.02; UDH versus DCIS, 0.01; ADH versus DCIS, 0.24.
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for postexpansion DAPI-stained images included foreground detec-
tion, nucleus seed detection and nuclear segmentation (Fig. 5a). 
Following application of this framework, we extracted three kinds of 
features from each segmented nucleus from both the pre-expanded 
and postexpanded images—nuclear morphology features, nuclear 
intensity features and nuclear texture features.

Each of the two data sets (pre-expansion and postexpansion) con-
sisted of 105 images—36 normal breast tissue images, 31 proliferative 
lesion (benign) images (15 usual ductal hyperplasia, (UDH) and 16 
atypical ductal hyperplasia (ADH)) and 38 ductal carcinoma in situ  
(DCIS). The average expansion factor was 4.8 (s.d. 0.3). We first assessed 
the impact of ExPath on nuclear detection and segmentation for a 
subset of 31 images (6 normal, 9 UDH, 9 ADH and 7 DCIS; Fig. 5b).  
Computational detection of nuclei was significantly more accurate 
in expanded samples (Fig. 5b), with an 11% increase in true-positive 
rate, a 22% increase in positive predictive value, and a 16% increase 
in F-score over nonexpanded samples (Supplementary Tables 6 
and 7; Supplementary Fig. 9); and segmentation was significantly 
improved as well, with a 14% increase in F-score, a 77% increase in 
Cohen’s kappa and a 66% decrease in global consistency error (GCE) 
(Supplementary Table 8). This improved accuracy of nuclear detec-
tion and segmentation could in principle support improved compu-
tational pathology analyses. To this end, we found that expansion 
substantially improved the performance of diagnosis classification 
models over pre-expansion data (Fig. 5c and Supplementary Table 9).  
When we examined the area under the receiver operator curve (AUC) 
of true positives versus false positives (a perfect classifier would 
achieve an AUC of 1, and a random classifier would achieve an AUC 
of 0.5), our pipeline could discriminate lesions such as UDH from 
atypical lesions such as ADH with an AUC of 0.93 on expanded sam-
ples compared with only 0.71 on pre-expanded samples. The most sig-
nificant features selected by these classification models are shown in 
Supplementary Tables 10 and 11. Features extracted from individual 
postexpansion images were normalized by their expansion factors 
before running our digital pathology pipeline; however, such normali-
zation did not greatly affect the results (Supplementary Table 12).  
These findings suggest that the improved nuclear segmentation 
achieved on postexpansion images results in more informative fea-
tures and, in turn, more accurate classification models.

DISCUSSION
We herein describe ExPath, a simple and versatile method for opti-
cal interrogation of clinical biopsy samples with nanoscale precision 
and molecular information. ExPath is an extension of our proExM 
protocol9 optimized for clinical samples—FFPE, H&E-stained and 
fresh-frozen tissues. ExPath thus enables nanoscale imaging of clini-
cal samples on common imaging hardware. We found that ExPath 
functions well on a wide diversity of tissue types, and that it has 
immediate clinical application in the diagnosis of diseases known 
to exhibit nanoscale pathology (e.g., kidney MCD). Although EM 
has far superior resolution to that of ExPath, the processing time 
for ExPath is significantly shorter than that for EM, and the skills 
and equipment required to perform ExPath are less demanding than 
those required for EM (Supplementary Table 13). Moreover, ExPath 
enables multiplexed localization and identification of biomolecules in 
situ, both of which are challenging with EM. Of course, without larger 
scale studies it is unclear whether ExM would eliminate the need for 
EM in diagnostic renal pathology of podocytopathies. We highlight 
the potential of ExPath to improve diagnostics by providing greater 
information content to inform sample classification. We found that 
ExPath enhances researchers’ ability to detect and segment nuclei, 

and that the increased information content of expanded breast tissue 
samples improves the performance of computational pathology clas-
sifiers for the analysis of proliferative breast lesions.

ExM protocols are robust; in parallel to our development of 
proExM, two other groups developed related protocols28,29; this high-
lights the ability of multiple groups to implement such technologies. 
Another key advantage of ExPath is its versatility; we demonstrate 
here that not only can ExPath address a wide variety of samples, but 
also it can be used for multimodal investigation of clinical samples 
(e.g., incorporating DNA FISH into the pipeline, using only commer-
cially available probes). In the future, it will be of interest to research-
ers and clinicians to combine ExPath with ongoing developments in 
multiplexed imaging of RNA30–32 and protein33. Although embedding 
biological specimens in hydrogels such as polyacrylamide to support 
imaging goes back decades34, the use of polyelectrolyte hydrogels to 
move biomolecules and labels apart evenly not only helps improve the 
resolution of existing microscopes, but also may help support chemi-
cal analysis of biomolecules in situ, since ExM separates biomolecules 
and surrounds them with pure environments of our choosing.

In the current iteration, ExPath enables ~4.5× physical magni-
fication in each dimension. Although it expands the volume to be 
imaged, and thus requires more voxels to be imaged, the ability to 
use fast diffraction-limited optics enables the voxel sizes of a super-
resolution imaging modality to be acquired at the voxel acquisition 
rates of fast diffraction-limited optics. ExPath is compatible with a 
wide variety of stains and antibodies used throughout biology and 
pathology. Similar to those of ExM and proExM, ExPath samples are 
transparent with a refractive index matched to that of water, and they 
can thus support fast volumetric imaging on light-sheet microscopes 
(as has been previously shown for expanded samples12). In the cur-
rent implementation of ExPath, most proteins are digested away to 
enable even expansion, and this prevents postexpansion interroga-
tion. In the future, protein-retention forms of ExM that enable most 
proteins to be retained9,29 may support more information-preserving  
forms of ExPath. To date, these ‘full protein retention’ forms of ExM 
have not been fully validated by direct comparison to a classical 
super-resolution modality. Another property of ExPath is that the 
expansion process dilutes the concentration of fluorophores. For low-
abundance targets, it may be desirable to implement signal ampli-
fication before imaging. Since proteins are lost after proteinase K  
treatment, non-protein-reliant amplification methods such as hybrid-
ization chain reaction amplification of gel-anchored labels may be 
helpful, as has been demonstrated for single-molecule RNA imaging 
in expanded specimens12.

Standardization and automation of ExPath are important future 
steps toward clinical adoption. Comparing pre-expansion and postex-
pansion images taken at low magnifications enables simple calculation 
of the expansion factor, so that the physical size of the postexpansion 
image can be mapped onto biologically relevant units, and nulling out 
the small (<10%) sample-to-sample expansion factor variation.

ExPath may broadly enhance the computational analysis of path-
ological specimens. Here, we analyzed nuclear morphology and 
explored the classification of early breast lesions. We found that 
nuclear segmentation algorithms, which historically have shown only 
moderate performance on standard histopathological images35, show 
excellent performance on ExPath images. We also found that diagno-
sis classification models that focus on nuclear morphologic pheno-
types perform better on ExPath images than on pre-expansion images. 
The accurate classification of preinvasive breast diseases represents 
a difficult area in diagnostic pathology with significant discordance 
observed between individual pathologists11. Accurate classification is 
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important because it determines clinical treatment which can range 
from observation (for a benign, nonatypical lesion) to surgery (for a 
diagnosis of atypia or malignancy). Further validation of our findings 
on larger sample sets will be critical for understanding the potential 
of this technology in the clinic. In general, as cancer screening pro-
cedures for common malignancies (e.g., malignancies in skin, lung, 
prostate, esophagus and colon) continue to improve, a larger propor-
tion of pathology specimens will contain small, noninvasive lesions, 
and accurate pathological classification of these specimens will play 
an important role in clinical management.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Human samples. The breast pathological specimens used in Figure 1j,k and nine 
cases from the study on ExPath-based analysis of early breast lesions (Fig. 5) were 
from the pathology archives of the Beth Israel Deaconess Medical Center, obtained 
under BIDMC IRB protocol #2013p000410 to A.H.B. (in addition, we used 11 
cases from US Biomax and 21 cases from Abcam). The frozen kidney patho-
logical samples used in Figure 4d–g and Supplementary Figure 8 were provided 
by the Brigham and Women’s Hospital archives under the BWH IRB protocol 
#2011P002692 to A.W. The rest of the breast and kidney samples used in this study 
were bought from either US Biomax or Abcam (Supplementary Table 14). Other 
human tissue samples and tissue microarrays were purchased from commercial 
sources (see Supplementary Table 14). The use of unused, unidentified archival 
specimens does not require informed consent from the subjects.

Tissue section recovery. For formalin-fixed paraffin-embedded (FFPE) 
clinical samples, samples were sequentially placed in a series of solutions: 2× 
xylene, 2× 100% ethanol, 95% ethanol, 70% ethanol, 50% ethanol and (finally) 
doubly deionized water. All of these steps were performed at room temperature 
(RT), 3 min each.

For stained and mounted permanent slides, samples were briefly placed in 
xylene at RT. Then coverslips were carefully removed with appropriate tools, 
such as a razor blade. If the coverslip was difficult to remove, the slides were 
further incubated in xylene at RT until the coverslip was loosened. Slides were 
then treated as FFPE samples.

Unfixed frozen tissue slides in optimum cutting temperature (OCT) solu-
tion (Tissue-Tek) were initially fixed for 10 min in acetone at −20 °C before 
three PBS washes for 10 min each at RT. For already fixed frozen clinical tissue 
sections, the slides were left at RT for 2 min to let the OCT melt and washed 
3× with PBS solution at RT for 5 min each.

Sample heat treatment. All human tissue samples used in this study were heat 
treated before immunostaining. Briefly, tissue slides were placed in 20 mM 
sodium citrate solution (pH 8, when measured at RT) at ~100 °C in a heat-
resistant container, and then the container was immediately transferred to a 
60 °C incubator for 30 min.

Immunostaining. Samples were first blocked with MAXblock Blocking 
Medium (Active Motif) for 1 h at 37 °C, followed by incubation with primary 
antibodies in MAXbind Staining Medium (Active Motif) at a concentration of 
10 µg/mL for at least 3 h at RT or 37 °C (in our hands, it did not matter which), 
and then washed three times with MAXwash Washing Medium (Active Motif) 
for 10 min each at RT. Samples were incubated with appropriate secondary 
antibodies at a concentration of approximately 10 µg/mL together with 300 
nM DAPI (when nuclear imaging was required; DAPI was from Thermo Fisher 
Scientific) in MAXbind Staining Medium for at least 1 h at 37 °C, for 5 µm 
thick tissue (further optimization of incubation duration or temperature may 
be needed for thicker tissues), then washed in MAXwash Washing Medium 
three times for 10 min each at RT. All the primary antibodies used in this 
work are listed in Supplementary Table 15. Secondary antibodies used were: 
goat anti-chicken Alexa 488 (ThermoFisher Scientific, cat# A-11039), goat 
anti-rabbit Alexa 546 (ThermoFisher Scientific, cat# A-11010) and goat anti-
mouse CF633 (Biotium, cat# 20341); except goat anti-guinea pig Alexa 488 
(ThermoFisher Scientific, cat# A-11073) was used in Supplementary Figure 
6, goat anti-mouse Atto 647N (Sigma-Aldrich, cat# 50185) was used in Figure 
3, and goat anti-chicken Alexa 546 (ThermoFisher Scientific, cat# A-11040) 
and goat anti-rabbit Alexa 488 (ThermoFisher Scientific, cat# A-11008) were 
used in Figure 4.

Chemical treatment for protein preservation. The expansion microscopy 
method used is a variation of our previously reported proExM protocol9. 
Acryloyl-X, s.e.m. (6-((acryloyl)amino)hexanoic acid, succinimidyl ester, here 
abbreviated AcX, fromThermo Fisher Scientific) was dissolved in anhydrous 
DMSO at a concentration of 10 mg/mL, then it was aliquotted and stored fro-
zen in a desiccated environment at −20 °C. Tissue slides were incubated with 
0.03–0.1 mg/ml AcX (0.03 mg/ml for samples fixed with nonaldehyde fixatives, 
0.1 mg/ml for samples fixed with aldehyde fixatives) diluted in PBS buffer for at 
least 3 h at RT. Note that thicker samples require longer incubation times.

In situ polymer synthesis. The method for in situ polymer synthesis in ExPath 
is slightly modified from our original proExM protocol8. Briefly, a monomer 
solution made of 1× PBS, 2 M NaCl, 8.625% (w/w) sodium acrylate, 2.5% 
(w/w) acrylamide and 0.10% (w/w) N,N′-methylenebisacrylamide (or BIS for 
short) (all from Sigma-Aldrich) was prepared and aliquotted and stored at 
−20 °C before in situ polymer synthesis. The slightly lower BIS concentration 
caused slightly more expansion than previous protocols, at the expense of 
slightly lower gel sturdiness. The chemicals 4-hydroxy-2,2,6,6-tetramethyl-
piperidin-1-oxyl (4HT, Sigma-Aldrich) as an inhibitor, tetramethylethylenedi-
amine (TEMED, Sigma-Aldrich) as an accelerator and ammonium persulfate 
(APS, Sigma-Aldrich) as an initiator were each added sequentially to the 
monomer solution to prepare the gelling solution (final concentration, 0.01% 
(w/w) for 4HT and 0.2% (w/w) for both APS and TEMED). Tissue slides were 
incubated with the monomer solution for 30 min at 4 °C to allow diffusion 
of monomer solution into the tissues while preventing premature gelation. 
Then, a gel chamber was constructed by putting a coverslip on top of the tis-
sue, with spacers on either side of the tissue section to prevent compression 
of tissue. The gel chamber was filled with the fresh gelling solution. Finally, 
slice samples were incubated for 1.5–2 h at 37 °C in a humidified atmosphere 
to complete gelation.

Sample digestion and expansion. After gelation, samples were incubated in 
8 U/ml proteinase K (New England Biolabs) in a digestion buffer (modified 
from the original proExM recipe) consisting of 50 mM Tris (pH 8), 25 mM 
EDTA, 0.5% Triton X-100 and 0.8 M NaCl; and the tissues were incubated 
for 3 h at 60 °C or until the completion of digestion (i.e., the gelled tissue is 
detached from the glass slide and becomes transparent, and the gelled tissue 
remains flat without bending or twisting in the solution). Digested samples 
were washed once with 1× PBS buffer for 10 min at RT and stained with 300 
nM DAPI in PBS buffer for 20 min at RT; then they were washed once with 1× 
PBS for 10 min at RT. Finally, gels were placed in doubly deionized water at RT 
for 10 min to expand. This step was repeated three to five times in fresh water 
until the size of the expanded sample stabilized. To prevent bacterial growth, 
we sometimes added sodium azide (final concentration 0.002–0.01%) to the 
water used for expansion. Note that addition of sodium azide may reduce the 
expansion factor by around 10%.

Structured illumination microscopy pre-expansion imaging. For 
Supplementary Figure 3, HeLa cells (ATCC CCL2) were fixed with 4% para-
formaldehyde for 10 min, washed three times for 5 min each with PBS, and 
permeabilized with 0.1% Triton X-100 for 15 min. Microtubules in fixed HeLa 
cells were stained with primary antibodies (rabbit anti-α-tubulin, Abcam) in 
MAXbind Staining Medium (Active Motif) at a concentration of 10 µg/mL for 
1–4 h at 37 °C and then washed in MAXwash Washing Medium (Active Motif) 
three times for 5 min each. Specimens were then incubated with secondary 
antibodies and 300 nM DAPI in MAXbind Staining Medium for 1–4 h at 37 
°C and then washed in PBS three times for 5 min each. These cells were used 
as a technology test bed, not to make scientific conclusions, so no detailed 
scientific justification for the choice of cell line is needed. Cells were authen-
ticated and tested for mycoplasma contamination via standard procedures of 
the ATCC. Unless specifically stated, all the steps were performed at RT.

For Figure 1f, a customized 5 µm thickness breast TMA was prepared and 
stained with primary (rabbit anti-KRT19, chicken anti-vimentin) as well as 
secondary antibodies and DAPI as described in “Immunostaining.” Super-
resolution structured illumination microscopy imaging was performed on a 
Deltavision OMX Blaze (GE Healthcare) SIM microscope with a 100× 1.40 
NA (Olympus) oil objective. Stained samples were imaged with SlowFade Gold 
(Invitrogen) antifade reagent for suppression of photobleaching and refractive 
index matching for pre-expansion imaging.

Fluorescent microscopy after expansion. Low-magnification images of speci-
mens (Fig. 1b,c; ‘core’ images of Fig. 3; Supplementary Figs. 2e–h,4 and 5) 
were imaged on a Nikon Ti-E epifluorescence microscope with a SPECTRA 
X light engine (Lumencor) and a 5.5 Zyla sCMOS camera (Andor), control-
led by NIS-Elements AR software, with a 4× 0.13 NA air objective or 10× 0.2 
NA air objective (Nikon). For Figures 1k–m,2a–j and 5 and Supplementary 
Figures 2a (ii–vi),b(ii, iii, v, and vi),i,j, 6 and 8, the images were acquired on 
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the same microscope with a 40× 1.15 NA water-immersion objective (Nikon).  
The following filter cubes (Semrock, Rochester, New York) were used: DAPI, 
DAPI-11LP-A-000; Alexa Fluor 488, GFP-1828A-NTE-ZERO; Alexa Fluor 
546, FITC/TXRED-2X-B-NTE; Atto 647N or CF 633, Cy5-4040C-000.

All other fluorescence images were taken on an Andor spinning disk (CSU-
X1 Yokogawa) confocal system on a Nikon TI-E microscope body with a 40× 
1.15 NA water-immersion objective. DAPI was excited with a 405 nm laser and 
imaged with a 450/50 emission filter. Alexa Fluor 488 was excited with a 488 nm 
laser and imaged with a 525/40 emission filter. Alexa Fluor 546 was excited with 
a 561 nm laser and imaged with a 607/36 emission filter. Atto 647N and CF633 
were excited with a 640 nm laser and imaged with a 685/40 emission filter.

To prevent the gels from drifting during imaging following expansion, they 
were placed in glass-bottom six-well plates with all excess liquid removed. If 
immobilization was needed, liquid low-melt agarose (2% w/w) was pipetted 
around the gel and allowed to solidify to encase the gels before imaging.

Figures 1g, 2 and 3 (except core images); Figure 4; Supplementary Figure 
7 and Supplementary Figure 9 are maximum intensity projections (MIPs) 
of 0.25 µm thickness (in pre-ExM distance units). Figures 1k–m and 5 and 
Supplementary Figure 8 are MIPs of 2 µm thickness.

Bright-field microscopy. Low-magnification images (Supplementary Fig. 4) 
were acquired on a Nikon Ti-E microscope with a DS-Ri2 sCMOS 16mp Color 
Camera (Nikon) and white LED illuminator with a 4× 0.13 NA air objective 
or 10× 0.2 NA air objective. High-magnification images of H&E slides (Figs. 
1j and 5; Supplementary Fig. 9) were acquired on the Panoramic Scan II 
(3DHistech) with a 40× 0.95 NA air objective (Zeiss).

Autofluorescence analysis. Background was removed from images by sub-
traction of mean pixel values from blank regions before analysis. For each 
fluorescent channel, ten regions of interest containing the brightest fluorescent 
signals and one area containing only autofluorescence signal, as judged by a 
pathologist’s visual inspection, were selected and used to calculate signal-to-
background ratios.

Measurement of the expansion factor and normalization. We suggest, as 
we did here, that users acquire low-magnification images of the sample pre-
expansion and postexpansion and then take the ratio of these sizes to calculate 
the expansion factor, which can be used to normalize the physical size of the 
postexpansion image to that of the pre-expansion state and thus enable ‘bio-
logical’ length units to be used. This normalization process also nulls out the 
small (<10%) natural sample-to-sample variability of the expansion process.

Measurement error quantification. This section is based on our previously 
described method8 for distortion vector field calculation and root-mean-
square (RMS) error calculation, with minor modifications. We semiautomated 
the distortion vector field and RMS error calculation with improved code, 
eliminating the need for manual selection of control points for the nonlinear 
registration that leads to the distortion vector field8. Given the challenge of 
finding matching z planes in pre-expansion versus postexpansion states, the 
same fields of view in multiple z planes were first imaged pre-expansion and 
postexpansion. To match z planes pre-expansion and postexpansion, scale-
invariant feature transform (SIFT) key points36 were generated for all possible 
combination of pairs of pre-expansion z planes and postexpansion z projec-
tions (note that, since the sample expands along the z axis, one pre-expansion z 
plane should correspond to one postexpansion z projection from 4–5 z planes). 
SIFT key points were generated using the VLFeat open-source library37 and 
filtered by random sample consensus (RANSAC) with a geometric model 
that only permits rotation, translation and uniform scaling. The pair of pre-
expansion and postexpansion images with the most SIFT key points was used 
for image registration by rotation, translation and uniform scaling, as well as 
calculation of expansion factors and distortion vector fields. By subtracting 
the resulting vectors at any two points, distance measurement errors could 
easily be sampled, and the RMS error for such measurements was plotted as a 
function of measurement length from at least three patients.

Expansion immunoFISH. For ExPath samples being processed for immuno-
histochemistry plus DNA FISH probing, digested gel samples were placed in 

hybridization buffer made of 1× PBS, 15% ethylene carbonate, 20% dextran 
sulfate, 600 mM NaCl and 0.2 mg/ml single-stranded salmon sperm DNA at 
85 °C for 30 min; then they were mixed with 30 µL of hybridization buffer that 
contained SureFISH probes 17q12 HER2 and Chr17 CEP (Agilent/Dako) and 
was preheated at 85 °C for 10 min. The mixtures were then incubated at 45 °C 
overnight. The next day, samples were washed with stringency wash buffer 
made of 1× SSC (150 mM NaCl, 15 mM sodium citrate, pH 7.0) and 20% eth-
ylene carbonate at 45 °C for 15 min, followed by washes with 2× SSC at 45 °C 
three times for 10 min each. Finally, the gel samples were washed with 0.02× 
SSC multiple times at RT (5 min each) until the expansion was completed.

Computational nuclear atypia analysis. For the task of evaluating nucleus detec-
tion and nucleus segmentation, the analyses leading to the tables and figures 
listed as follows used 31 cases out of the total of 105 cases: Supplementary Tables 
6–8 and Supplementary Figure 9. For the task of image classification (see cor-
responding section below), the tables and figures listed as follows used all 105 
cases: Supplementary Tables 9–12 and Figure 5c. We proposed a framework for 
classification of expanded tissue images into different categories: normal breast, 
benign breast lesions (UDH and ADH) and noninvasive breast cancer (DCIS). 
This image classification framework consisted of four components: image pre-
processing, nuclei segmentation, feature extraction and image classification. The 
image preprocessing and nuclei segmentation pipelines are shown in Figure 5a.

Image preprocessing. Due to confocal acquisition (see above) of multiple nono-
verlapping image tiles, which required stitching to produce a single image, these 
tiles exhibited background fluorescent signals. During image preprocessing, a 
rolling-ball algorithm38 with ball size set to the average nuclei size was applied 
to remove background noise. After background noise removal, nucleus-to-
background contrast was enhanced by adaptive histogram equalization39. These 
enhanced images were then smoothed by a median filter with radius 10.

Nuclei segmentation. The nuclei segmentation procedure consisted of three 
steps. First, nuclei were segmented using a Poisson-distribution-based mini-
mum error thresholding method40. Standard and global thresholding meth-
ods are not as efficient as a minimum error threshold method when there is 
high variability within the nuclei regions and background regions. In order 
to address this issue, our locally adaptive thresholding algorithm selected the 
threshold by modelling the image histogram as a mixture of two Poisson mod-
els. The threshold value was computed by minimizing the relative entropy 
between the image histogram and the Poisson mixture model. The initial seg-
mentation of nuclei was then improved by a set of morphological operations 
that include hole filing and morphological closing to fill holes and to combine 
small fragments of nuclei into single nuclei as well as morphological opening 
to remove small non-nucleus regions (e.g., blood vessels, parts of fragmented 
nuclei and artifacts). This segmentation method may undersegment clusters of 
nuclei that touch each other. Second, to separate the touching and overlapping 
nuclei, we used a scale-adaptive multiscale Laplacian of Gaussian (MSLoG) 
filter41 to produce local maxima and select seed points for nuclei. For selecting 
local maxima, constant scale produces imprecise nuclear seed points, since 
nuclear size varies considerably in early breast neoplasia lesions. In order to 
address the problem of imprecise nuclear seed points, a scale-adaptive MSLoG 
filter was applied on a given number of scales, and then local maximum points 
in the scale-space response were selected as seed points. Last, these seed points 
were used as markers for the marker-controlled watershed algorithm to sepa-
rate touching and overlapping nuclei.

Feature extraction. After nuclei segmentation, we extracted morphological, 
first-order and second-order statistical features for each nucleus. The mor-
phological features included shape and geometrical features, which represent 
extracted nuclear phenotypic information. The computed morphological 
features were area, convex area, perimeter, equivalent perimeter, eccentricity, 
orientation, solidity, extent, compactness, major axis length, minor axis length, 
elliptical minor and major radius. The first-order statistical features corre-
sponded to the distribution of gray-level values within nuclei. The computed 
first-order statistical features were mean, median, mean absolute deviation, 
s.d., interquartile range, skewness and kurtosis. The second-order statistical 
features corresponded to the textural variation inside nuclei.
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We computed two types of second-order statistical features using gray-level 
Haralick co-occurrence42 and run-length43 matrices. The co-occurrence matrix 
GLCM (i,j; d,θ) is square with dimension Ng, where Ng is the total number of 
gray levels in the image. The value at the ith column and jth row in the matrix 
was produced by counting the total number of occasions where a pixel with 
value i is adjacent to a pixel with value j at a distance d and angle θ. Then 
the whole matrix was divided by the total number of such comparisons that 
were made. Alternatively, we can say that each element of the GLCM matrix is 
considered as the probability that a pixel with gray level i is to be found with a 
pixel with gray level j at a distance d and angle θ. We defined adjacency in four 
directions (vertical, horizontal, left and right diagonals) with one displacement 
vector, which produced four GLCM matrices. In our case, texture information 
was rotationally invariant. So we took the average in all four directions and pro-
duced one GLCM matrix. Later, we computed 14 features proposed by Haralick 
from the GLCM in order to identify texture more compactly. These 14 features 
were autocorrelation, correlation, contrast, cluster shade, cluster prominence, 
energy, entropy, homogeneity, inverse difference normalized, inverse difference 
moment normalized, dissimilarity, maximum probability, information measure 
correlation 1 and information measure correlation 2.

The set of consecutive pixels, with the same gray level, collinear in a given 
direction, constitutes a gray-level run-length matrix GLRLM (i,j; θ). The 
dimension of the GLRLM is Ng × R, where Ng is the number of gray levels, and 
R is the maximum run length. Similar to the GLCM, we computed GLRLMs for 
four directions and averaged them. The 11 run-length features, derived from 
the GLRLM, are short run emphasis (SRE), long run emphasis (LRE), gray 
level nonuniformity (GLN), run length nonuniformity (RLN), ratio-percent-
age (RP), low gray level runs emphasis (LGLRE), high gray level runs emphasis 
(HGLRE), short run low gray level emphasis (SRLGLE), short run high gray 
level emphasis (SRHGLE), long run low gray level emphasis (LRLGLE) and 
long run high gray level emphasis (LRHGLE). In total, we computed 45 fea-
tures for each nucleus. Last, these features were summarized at the image level 
by computing the first-order statistics, including mean, median, mean absolute 
deviation, s.d., interquartile range, skewness and kurtosis of each feature per 
image, producing 315 summary features per image.

Image classification. In the last part of our framework, we performed logistic 
regression with Lasso regularization to build multivariate image feature-based 
models to classify normal, benign and preinvasive malignant tissue images. 
The analyses were implemented in R (http://www.r-project.org/), using the 
glmnet package44. Lasso regularization45 was used to create simpler models less 
prone to overfitting than those that would be obtained from standard logistic 
regression. The Lasso procedure consists of performing logistic regression with 
an L1 regularization penalty, which has the effect of shrinking the regression 
weights of the least predictive features to 0. The amount of the penalty (and the 
number of nonzero features in the model) is determined by the regularization 
parameter λ. This method has been shown to perform well in the setting of 
colinearity46 and has been widely used to build predictive models from high-
dimensional data in translational cancer research. Features were standardized 
separately in the training and validation data sets before model construction, 
using the selected setting in glmnet. We evaluated model performance with 
six-fold cross-validation (6F-CV). For validation, we selected the value of λ 
that achieved the maximum area under curve (AUC) in cross-validation on the 
training data set and applied this fixed model to the validation data set. Model 
performance was assessed by computing the AUC of true positives versus false 
positives, where a perfect classifier would achieve an AUC of 1, and a random 
classifier would achieve an AUC of 0.5.

We also evaluated our framework using two other machine learning clas-
sifiers, which are commonly used in biomedical research. A Random Forest 
classifier47 fits a number of decision trees on various subsamples of the data set 
and uses averaging to improve the predictive accuracy and to control overfit-
ting. Number of trees (numTrees), maximum depth of the tree (maxDepth) 
and number of features (numFeatures) to be used in random selection are 
three parameters that affect the performance of the Random Forest classifer. 
In our experiments we used numTrees = 100, maxDepth = 30 and numFeatures 
= 20. The other classifier we explored was Naïve Bayes48, which is a probabi-
listic classifier based on applying Bayes’ theorem with strong independence 
assumptions between the features. As the predicted value is class label (i.e., we 

are pursuing a classification problem), the independence assumption is less 
restrictive for classification as compared to regression48.

Image classification results. We applied our image classification framework 
to images from both pre-expanded and expanded samples. Both data sets con-
sisted of 105 images containing 36 normal breast tissue images, 31 benign 
lesion breast tissue images (15 UDH and 16 ADH) and 38 noninvasive breast 
tissue images (DCIS) from 41 cases (likely different patients, but since patients 
were identified only by sex and age in commercial samples, this is a lower 
bound). Thus, these 105 images belonged to four different classes (normal, 
UDH, ADH and DCIS). The ground-truth classification was performed and 
validated by three certified pathologists and authors of this study (E.-Y.O., V.T. 
and S.J.S.) from more than 350 examined cases. The total number of images 
was 131; 105 images were analyzed, and 26 were excluded because they were 
judged to be borderline diagnostic cases. In order to discriminate normal breast 
tissue versus benign and noninvasive, we performed binary classification for 
all classes (Fig. 5c). When discriminating normal breast tissue versus UDH, 
ADH and DCIS tissue, the GLMNET classifier reported AUC values of 0.95, 
0.96 and 0.94 for expanded data as compared to AUC values of 0.86, 0.82 and 
0.75, respectively, for pre-expanded data. For differentiating nonatypical breast 
tissue (UDH) from atypical breast tissues (ADH and DCIS), the GLMNET 
classifier reported AUC values of 0.93 and 0.89 for expanded data as com-
pared to AUC values of 0.71 and 0.82, respectively, for pre-expanded data. For 
discriminating atypical benign breast tissue (ADH) versus noninvasive breast 
cancer tissue (DCIS), the GLMNET classifier reported an AUC value of 0.95 for 
expanded data as compared to an AUC value of 0.84 for pre-expanded data. A 
comparison of GLMNET classification results versus two other machine learn-
ing classifiers (Naïve Bayes and Random Forest) is reported in Supplementary 
Table 9. Top-performing features in expanded and pre-expanded data are 
reported in Supplementary Tables 10 and 11, respectively.

Statistical analysis. Statistical analyses were performed with R (version 3.2.5). 
Data are presented as mean ± s.d. (SD) or s.e.m. (SEM) with sample numbers 
n noted in the text, tables and figure legends. Student’s t-test was used to 
determine significant differences between means. A bootstrapped paired t-
test was used to statistically compare receiver operator curves. In the boxplot 
graphs, the ends of whiskers are defined by the s.d., and the central rectangle 
spans from minimum to maximum; the segment in the rectangle indicates the 
median, and the square symbol indicates the mean.

Data availability statement. The expansion pathology protocol and the code 
used for the computational nuclear atypia analysis are posted at http://expan-
sionmicroscopy.org. Data are available upon request to the corresponding 
authors of the paper.
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