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An Electric Field Model for Prediction of
Somatosensory (S1) Cortical Field Potentials
Induced by Ventral Posterior Lateral (VPL)

Thalamic Microstimulation
John Stephen Choi, Marcello Michael DiStasio, Austin J. Brockmeier, and Joseph Thachil Francis

Abstract—Microstimulation (MiSt) is used experimentally and
clinically to activate localized populations of neural elements. How-
ever, it is difficult to predict—and subsequently control—neural
responses to simultaneous current injection through multiple elec-
trodes in an array. This is due to the unknown locations of neu-
ronal elements in the extracellular medium that are excited by the
superposition of multiple parallel current sources. We, therefore,
propose a model that maps the computed electric field in the 3-D
space surrounding the stimulating electrodes in one brain region to
the local field potential (LFP) fluctuations evoked in a downstream
region. Our model is trained with the recorded LFP waveforms
in the primary somatosensory cortex (S1) resulting from MiSt ap-
plied in multiple electrode configurations in the ventral posterolat-
eral nucleus (VPL) of the quiet awake rat. We then predict the cor-
tical responses to MiSt in “novel” electrode configurations, a result
that suggests that this technique could aid in the design of spatially
optimized MiSt patterns through a multielectrode array.

I. INTRODUCTION

M ICROSTIMULATION (MiSt) is a technique used in the
functional analysis of neural activity, and shares its bio-

physical basis with clinical methods of deep brain stimulation
(DBS). Experimentally, the application of MiSt has been em-
ployed to demonstrate the causal role of locally defined neuronal
populations in the production of behaviors and conscious per-
ceptions [13], [17]. In the context of neuroprosthetics research
MiSt provides a means by which information can be delivered
into the central nervous system (CNS) [16], [15]. Designing
MiSt patterns for rich sensory feedback, however, is a difficult
problem. Often spatial resolution is low, and each stimulating
electrode affects many cells. There are also limits to current am-
plitudes, beyond which electrode corrosion and tissue damage
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occur. To maximize MiSt’s utility under these constraints, an ac-
curate multielectrode model of spatiotemporal patterns of MiSt
current input and evoked neural activity is needed.

Computational modeling studies of deep-brain stimulation
[11] indicate that electrical stimulation activates projecting
axons while inhibiting the activity of somata. This suggests that
the effects of MiSt should be characterized by induced activity
in downstream areas. For the purposes of MiSt, these are areas
contacted by efferent (or afferent) axons from the stimulation
location. In this paper, we focus on the somatosensory system,
where feedback from sensors on a brain-controlled device could
be delivered directly to the user via MiSt as haptic and tactile
feedback. We aim to influence primary somatosensory cortex
using the ventral posterolateral nucleus (VPL) thalamus as our
locus of control. As natural drivers of cortical activity, thalamic
relays appear to be promising candidates for prosthetic input
to cortex. Primary sensory cortex circuits are influenced by
thalamic relay cells via a recurrent circuit that allows the cortex
to modulate or gate thalamic activity [7]. It may, therefore,
be easier to achieve exogenous control of cortical activity
by driving thalamocortical inputs with MiSt, rather than by
directly stimulating the cortex itself. In this paper, we present
a model that locates the most sensitive regions (to current
density amplitude) around a MiSt electrode array in thalamus,
as measured by ability to modulate cortical LFP.

A. Background for Model

The amount of activation of neural tissue by microstimu-
lation is dictated by the physical extent of current spread and
by the electrical excitability of the elements in that volume.
The excitability properties of many neural elements have been
described, often by determination of chronaxie for neurons
or their compartments (for reviews, see [19] and [14]). The
relationship between many microstimulation parameters and
patterns of neural activation have been investigated, including
pulse duration [2], current polarity relative to stimulated el-
ements [14], and inter-pulse intervals (both fixed [12] and
variable [8]). In some studies, behaviors elicited (e.g., saccades
[12]) have been used in conjunction with knowledge of cortical
functional anatomy to estimate the spread of neural activation
caused by a microstimulation input. Furthermore, extensive
computational modeling of neural responses to electric stimu-
lation has been performed, using techniques like finite element
modeling (FEM) to account for electrode geometry and tissue
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Fig. 1. Two or more simultaneously-stimulating electrodes (SSE) are capable
of producing a wide range of field patterns that monopolar configurations acting
individually cannot. The static current density field lines resulting from bipolar,
tripolar, and hexogonal arrangements reveal the vector-additive interactions
among individual stimulating monopoles.

anisotropy [5]. Compartmental neuron models have also been
employed to describe complex excitable membrane responses
to electrical activation [10]. Such studies demonstrate the
improvement in quantitative conclusions that can be drawn
about MiSt-induced neuromodulation by taking electric field
effects into account. This study aims to extend some of these
conclusions in an intact animal (rat) model. In light of evidence
that thalamic relay cells function in different modes during
sleep and waking behavior [18] we describe the effects of
thalamic MiSt on cortical LFP in the quiet but awake state.

B. Simultaneously Stimulating Electrodes and Motivation
for Study

Passing current through multiple electrodes in parallel pro-
duces complex field patterns resulting from the vector-additive
interactions among current sources (see Fig. 1). We refer to this
technique as “simultaneously stimulating electrodes” (SSE).
For example, in bipolar stimulation configurations two elec-
trodes are simultaneously sourcing and sinking equal amounts
of current. In this case, the neural response is not simply a linear
combination of responses to the same two currents delivered
individually as monopoles referenced to ground [1]. A tripolar
arrangement involves three electrodes where one electrode
sinks the sum of the currents sourced by the remaining two.
The most general case is when parallel electrodes are inde-
pendently sourcing or sinking current, with a common distant
reference/ground as a return path.

It is often difficult and prohibitively time-consuming to test
all possible configurations of SSEs to find one that produces a
desirable physiological activation, so a more guided approach
is required. The relevant design choices are the subset of elec-
trodes to use and the amplitude of current to be sinked/sourced

from each. Clearly there is an infinite number of (configura-
tion, amplitude) combinations, which is probably why much
attention has been devoted to designing array geometries and
constrained SSE configurations (e.g., tripolar, hexagonal return)
that produce fields with desirable characteristics, such as spa-
tial specificity. A model that is based on features of the im-
parted electric field, regardless of the SSE configuration that
produced it, is necessary to capture more complex geometries.
Fortunately, the electrode contact locations in a multielectrode
array are known to a certain degree, and hence the electric field
information, despite being subject to theoretical simplifications,
is available.

Use of SSE patterns confers improved control over neural ac-
tivity versus monopolar stimulation. Bierer et al. have demon-
strated that using tripolar configurations in cochlear implants
produces more focal auditory cortex activation patterns than
seen with bipolar or monopolar stimulations [3]. In computer
simulated myelinated fibers of varying sizes around DBS elec-
trodes, bipolar stimulation produced different, more complex
(versus monopolar) activation zones [10]. It has also been shown
in simulation that a hexagonal configuration (see Fig. 1) des-
ignating one current source electrode and six surrounding re-
turn electrodes decreases the amount of current leakage to sur-
rounding areas considerably [9], indicating an increase in speci-
ficity. Thus, SSEs allow finer control over a region of neural
tissue than serially inputting monopolar stimulations.

C. Application to MIST of Somatosensory Thalamocortical
Afferents

We propose a parametric model that predicts downstream
neural response strength as a function of electric field. This
electric field could be produced by any number of stimulating
electrodes in any configuration. For the purposes of this report
only monopolar and bipolar configurations were used, but were
applied on varying combinations of electrodes. The electric
fields produced by various SSE configurations in VPL serves
as the input, and the resulting S1 LFP fluctuations serve as the
output. The model makes these response predictions based on a
weighted summation of electric field values calculated around
the stimulating array. Data from multiple stimulation config-
urations are used in learning this mapping. This procedure
also identifies where (in 3-D space) the induced electric field
has the largest influence on cortical response power. Though
we present here the results from MiSt in the VPL, ongoing
work with MiSt in the S1 cortex and the dorsal column nuclei
(DCN) will help us determine which region is the best target
for somatosensory neuroprostheses.

II. METHODS

A. Static Modeling Problem

The general problem we address is how to construct a model
that maps array microstimulation in one brain region to the re-
sulting responses in a downstream one. A good model should
accurately predict responses for arbitrary simultaneous stimula-
tion electrode (SSE) configurations. It should do so using data
from only a small number of such configurations, i.e., we would
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like to obviate the need for exhaustive SSE sampling. For sim-
plicity, let us assume that the responses on multiple recording
channels are conditionally independent given the stimulus. We
can then train a separate multiple-input single-output (MISO)
model for each recording channel.

For now, we focus our attention on static modeling, i.e., the
“responses” that the models predict are time-independent mea-
sures of magnitude. By collapsing the full dynamic response
into a single value, we can greatly simplify the learning problem.

Introducing our notation, we have stimulating electrodes
and downstream recording electrodes. We record local field
potential (LFP) waveforms from these channels while stim-
ulating in a variety of configurations and current amplitudes on
the electrodes. Let us denote the recorded LFP signal for one
channel as .

For each stimulation pulse, we know the current waveforms
through the stimulating electrodes, the (approximate) locations
of the electrode tips, and the recorded responses in downstream
electrodes. We stimulated with symmetric charge balanced
biphasic pulses (width s) delivered in monopolar and
bipolar configurations. Since these are stereotyped waveforms,
we assign a single current value to each stimulating electrode
that is positive when the current waveform through it is nega-
tive-first. For a single (configuration, amplitude) variation, let us
define as the multichannel currents through
all the electrodes. Each electrode is assigned one current value
according to the sign convention above. For unique stimulus
variations, we denote our input data as .
Throughout the recording session, each variation is delivered

times so the response waveforms can be averaged.
We denote the post-stimulus response strengths as

, where is given by the rms power of
the averaged response waveform in a window between the th
and th post-stimulus samples. Let
be a set of time indices during which pulses of a particular
stimulus variation occurred. Equation (1) shows the formula
for the rms response

... (1)

The static modeling data thus consists of experimentally
observed input/output (current/response) pairs, as shown in

(2)

where is the set of time indices in which the th stimulus
variation occurred.

B. Absolute Current Model (Field-Naive)

In one MISO model we consider, the relevant features are
the absolute channel currents out of all stimulating channels.
This model assigns no importance to the spatial locations of

the stimulating electrodes and assumes independence among
them. This is a reasonable assumption, considering that in places
where the field is highest, the observed field is dominated by
just one channel. This model also assumes that both polarities
of biphasic pulses elicit similar effects.

The model consists of a linear combination of currents fol-
lowed by a nonlinearity. The feature vector of absolute
currents in (5) is weighted by and biased by . A nonlin-
earity is then applied, which is scaled by a gain factor . In
this case we chose a logistic nonlinearity for . Equation (3)
shows the predicted output under this model

(3)

(4)

...

(5)

The optimal values of the model parameters
can be found by minimizing the cost function in (6). A regular-
ization parameter serves as a penalty on large values of , to
prevent overfitting to individual inputs. We used standard gra-
dient-based methods [4] to minimize this combined cost with
respect to

(6)

C. Electric Field Model (Field-Aware)

We also make a model that considers the electric field at
points in the three dimensional space surrounding the array,
thus explicitly using the electrode tip locations. A field of par-
ticular interest is current density , which is proportional to
electric field [1]. We can use an analytical solution (7) if we
make two assumptions. 1) The extracellular space is a uniform
and purely resistive medium. 2) The electrode tips can be ap-
proximated as point sources. Let us denote the stimulating loca-
tions as . The current density at a field point can
hence be calculated using knowledge of the current through
the electrodes

(7)

Many stimulation studies have shown dependence on
electric field [2], [12], [19]. Tehovnik et al. dubbed

distance the “Excitability Constant” for a
cell. It is a firing threshold that relates the stimulus current to
the distance to the stimulating tip. A simple rearrangement
of (7) shows that is proportional to the amplitude of if
there is only one stimulus electrode. In this monopolar case, if
there were a cell located at , then at the cell’s firing threshold,

. We generalize this idea to the multielectrode case in
(8) by taking the norm of , which we denote as

(8)
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is the scalar strength of the current density at any point .
We form a field-based prediction (9) that is functionally similar
to (3), but with field values at a grid of points as
features

(9)

... (10)

Although this model now has spatial organization, it only dif-
fers from (3) in its input features. We learn using the same
minimization methods as in (6). Hereafter, we refer to in
the field-aware model as the “sensitivity map” for a recording
channel.

To encourage smoother solutions of , i.e., ones with fewer
sharp dips/peaks, we add a roughness penalty term to the cost
(11). The penalty takes the squared norm of the first-order dif-
ferences of . Let be the first-order
spatial difference matrices in the , and directions, respec-
tively. Taking the norm of a vector formed by , and

has the effect of penalizing solutions that are rough in
any direction. The contribution of this penalty is controlled by
a hyperparameter

(11)

D. Experimental Validation

Two female Long–Evans rats (Hilltop, Scottsdale, PA), an-
imals A and B, were implanted with two different 16-channel
arrays [Fig. 2(A)]. One was placed in S1 spanning an area ac-
tivated by forepaw single digit stimulation. One was placed in
the VPL nucleus, targeted to the same receptive field using a
map in [6]. The thalamic array (MicroProbes Inc.) was a 2 8
grid of 70% platinum/30% iridium 75- m-diameter microelec-
trodes, with 500 m between the rows, and 250- m inter-elec-
trode spacing within the rows [Fig. 2(B)]. The microelectrodes
had a 25:1 taper on the distal 5 mm, with a tip diameter of 3 m.
The approximate geometric surface area of the conducting tips
was 1250 m . The shank lengths were custom designed to fit
the contour of the rat VPL as follows. Both rows were identical.
The shaft lengths for each row, from posterior to anterior were
(8, 8, 8, 8, 8, 7.8, 7.6, 7.4) mm.

The cortical probe (NeuroNexus Inc.) was an array of iridium
electrodes on 4 15- m-thick silicon shanks, with four electrodes
on each shank [see Fig. 2(C)]. The shanks were 68 m wide with
200 m between shanks (AP spacing, in our orientation) and
200 m between electrodes on a shank, giving a dorsal–ventral
span of 600 m. The circular electrode surfaces had a diameter
of 40 m.

All animal procedures were approved by SUNY Downstate
Medical Center IACUC and conformed to National Institutes of
Health guidelines. Neural recordings were made using a Multi-
channel Acquisition Processor system (Plexon, Inc.). Rats were

Fig. 2. Experimental Setup. A: Diagram of the neural recording and stimulation
setup. Field potential recordings are collected at wide-band frequencies from
16 microelectrodes implanted in S1. 2 stimulation leads are routed to specific
electrode channels in VPL, delivering pseudo-randomly drawn charge-balanced
variable-amplitude biphasic current pulses. B: Scale drawing of microwire elec-
trode array used for VPL stimulation, with isocontours of electric field strength
for an example bipolar current. Electrode tip locations are highlighted with dots.
C: Scale drawing of silicon microelectrode array (NeuroNexus Inc.) used for S1
recordings.

placed into a small chamber with a mesh floor which was sus-
pended above a table. This apparatus helped keep them calm
and stationary even though they remained awake. Field poten-
tial data from each of the 16 cortical channels was filtered and
amplified gain through a bandpass filter with cutoffs
at 0.7 Hz and 8.8 kHz. The output signal was then sampled at
20 kHz (National Instruments PCI-6071E).

MiSt pulses were delivered with a stimulus isolation unit
(AM Systems Model 2200) routed through a switchboard to the
VPL array electrodes to create various monopolar and bipolar
configurations. At each configuration, we stimulated with 250
biphasic pulses with pseudorandom current amplitudes drawn
from . The inter-pulse times
were drawn from an exponential distribution with a mean
period of 0.5 s. We stimulated on nine monopolar and nine
bipolar configurations in animal A and 16 monopolar and 23
bipolar configurations in animal B.

VPL stimulation caused a small nonsaturating artifact in
recording channels. It was removed using adaptive noise can-
cellation [20]. The initially recorded neural signal is assumed
to be corrupted additively by artifact, which in turn was caused
by a known reference waveform (a stereotyped biphasic square
pulse). A causal FIR filter was adapted through recursive least
squares (RLS) to reproduce the artifact waveform. This estimate
was then subtracted from the incoming signal. The artifact-free
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signal is then put through a third-order Butterworth band-pass
filter with cutoffs at 5 and 200 Hz and resampled at 800 Hz.

Our field-point grid [as used in (9)] spanned 200 m be-
yond the 3-D extent of the electrode tips. We used an inter-point
spacing of 50 m which resulted in a total of 18 800 field points.
For all stimulus configurations (monopolar/bipolar), the fields
were calculated according to (8). The rms responses [(1)] were
taken on a window from 12.5 to 100 ms post-stimulus

. We set the regularization parameter in (6) and
(11) to a small value, . For the roughness penalty ,
we tried five different values: to com-
pare their relative performance. Before training the models, we
divided the feature vectors and by their respec-
tive maximum (scalar) attempted values. This made all of the
element values of both vectors exist between 0 and 1.

III. RESULTS

A. Microstimulation and Natural Responses Were Spatially
Similar

Microstimulation at various VPL configurations produced a
wide range of LFP response strengths in S1. The rms strength,
as defined in (1), ranged from 0.02 to 202.48 V in animal A
and 5.01 to 349.92 V in animal B. Fig. 3(a) shows the variety
of responses in one recording channel. Since only four ampli-
tudes were used, the continuum of responses is largely due to
stimulus configuration. Temporal responses on typical channels
were highly stereotyped. Most consisted of short negative dips
followed by positive segments lasting roughly 60–80 ms. The
rms values mentioned hereafter are max-scaled to the largest
observed response and hence only have values between 0 and 1.
As mentioned before, the input features in both models are also
max-scaled. The model parameters and validation results shown
hereafter reflect these scaled versions of the inputs/outputs.

Fig. 3(b) shows the average rms responses across all stim-
ulus variations. They are shown arranged by recording site.
These recording channels also had similar responses to natural
stimulation, as shown in Fig. 4. The corresponding VPL spike
responses are shown in units of spikes/s over baseline. This
was calculated by taking the mean increase (above baseline) in
firing rate in a window of 80 ms post-stimulus with 3-ms bins.
Roughly speaking, the strength and spatial pattern of natural S1
activation coincided with that of microstimulation.

B. Field-Awareness Increased Generalization Ability

We compared spatial generalization ability by leave-one-con-
figuration-out (LOCO) validation. This measured a model’s pre-
dictive ability for configurations not included in model fitting.
In LOCO, all examples from one configuration at a time are
excluded from the training set (2) and later tested upon. Fig. 5
shows a subset of real and predicted multichannel responses.
The responses are sorted by real average response magnitude
across channels. The field-aware model is more accurate in pre-
dicting general trends of strong and weak responses. Corre-
lation performance during LOCO also shows this trend
(see Fig. 7). The mean and standard deviation of across
channels for the aware and naive models is shown in Table I.
In both animals, the field-aware models yielded significantly

Fig. 3. (a) Averaged post-stimulus waveforms for 72 different stimulus varia-
tions, or (electrode configuration, current amplitude) pairs. The configurations
used were monopolar and bipolar, and the current amplitudes used were 10,
20, 30, and 40 �A. Shown are averages across 62 presentations of each stim-
ulus variation. The color represents the corresponding rms amplitude of each
response. The scalar rms amplitude in the window delimited by the dotted lines
is the output of the static model we discuss in this report. (b) Normalized av-
erage MiSt rms response amplitudes arranged by cortical recording site. These
amplitudes are max-scaled by the largest observed rms amplitude, and hence are
between 0 and 1. Our cortical recording array was a 4� 4 NeuroNexus probe
with four shanks (200 �m spacing) and four contacts (200 �m spacing) per
shank [see Fig. 2(C)].

Fig. 4. Example of response strengths in animal A to tactile stimulation at three
different sites on the hand, arranged by channel location. Top row: rms LFP
strength in cortex. Bottom row: Corresponding VPL spike responses measured
in spikes/s above baseline.

less (sign-rank ) prediction error than the field-naive
models.

The field-aware model’s richer feature set is responsible
for the improved prediction accuracy. As shown in Fig. 6, the
weighted inputs to the nonlinearity yield less residual
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Fig. 5. LOCO output comparison for animal A. Each row shows responses to a
single MiSt variation. A subset of cortical responses is shown in the left column.
This subset is every fifth response out of a sorted list of real multichannel re-
sponses. The corresponding output predictions from the field-aware model and
field-naive models are shown in the center and right columns, respectively.

TABLE I
MODEL COMPARISON OF LOCO PREDICTION � PERFORMANCE (MEAN �

STD. DEVIATION ACROSS RECORDING CHANNELS) AND LOCO STABILITY

variance about the fitted curve, compared to the field-naive
model. The nonlinear curve for the field-aware model also
showed consistently less saturation. In other words, the spatial
feature mapping produced a more linear and more accurate
relationship to responses.

Are vector field interactions due to the array geometry im-
portant for generalization? If they were not, then shuffling or
perturbing the supposed electrode locations (before training)
would not degrade prediction accuracy. Since the areas that see
the strongest field would depend on just one electrode, shuffling

Fig. 6. One-dimensional representation of both models showing only the non-
linear stage [see (3) and (9)]. The horizontal axis is the output from applying�
to the feature vectors � or � . The vertical axis represents response
strength. Gray dots are the training outputs used during fitting, and the model
outputs are shown in blue or red. The nonlinearity is logistic with a scaling factor
�. The field-aware models in all rats and experiments exhibited less saturation
than the corresponding field-naive models.

Fig. 7. Prediction accuracy measured by squared correlation coefficient �� �
on LOCO validations for all recording channels. The field-aware model outper-
forms the field-naive and shuffled field-aware models.

these features would simply yield an equivalent model. The dif-
ferences between the shuffled and nonshuffled situations would
be in the field interactions resulting from the specific layout of
the array. The LOCO performance of the field-aware model and
a shuffled model are shown in Fig. 7. The shuffled model does
indeed do worse than the nonshuffled version, which
suggests that accurate geometric information produces more ac-
curate models. This comparison was made across all LOCO test
sets and recording channels. The shuffled model’s mean and
standard deviation of across channels is shown in Table I.

How sensitive are the parameter estimates to removing stim-
ulus configurations from the training set? We measured how
much the predicted output of a model varied during LOCO com-
pared to leaving no configurations out. The squared correlation
coefficient was taken between values of during LOCO and
values of when using all of the training data. This can be in-
terpreted as a scalar measure of the stability of (and the model
parameters) when single configurations are removed from the
training set. We refer to this quantity as the “LOCO stability” of
a model, and it is shown for all models and animals in Table I.
The field-aware model had higher stability than the naive or
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Fig. 8. Three-dimensional view of models for a single example cortical
channel. Dimensions are in millimeters. Left: A typical 3-D sensitivity map
used for a field-aware model, trained with � � ��� (shown with isocontour
surfaces). Right: As a point of comparison, the weights on absolute currents
out of the 16 individual electrodes used in the field-naive model show a similar
spatial mapping.

shuffled model. This also means that the field-aware model’s pa-
rameters exhibit better stability when faced with limited training
data.

Does the nonlinearity help in producing better predictions
or does it lead to overfitting? We tested this by training alternate
linear models where in (3) and (9) was replaced with identity.
In this case, the predicted response was simply a linear com-
bination of current/field inputs (with a constant bias term). The
LOCO generalization results are shown in Table I. The nonlinear
field-aware models outperformed their linear counterparts (and
all other competing models) in both animals. They had signif-
icantly higher prediction accuracy under a sign-rank test
over recording channels for animals A and
B, respectively). The nonlinear field-aware models also showed
significantly better LOCO stability.

C. Spatial Characteristics of the Field-Aware Model

Fig. 8 shows a color-coded optimal sensitivity map (left)
for a typical field-aware model. The adjacent plot (right) shows
the corresponding optimal weights for the field-naive model. Al-
though the two models resemble one another in gross spatial
features, the field-aware model assigns some weight to extracel-
lular space that is not in the immediate vicinity of an electrode.
The optimal weights in the field-aware case are mostly positive
with a positive skew. For example, in the sensitivity map shown
in Fig. 8, the range of the 18 800 weights is
with median 0.045. Similarly, the weight range in the field-naive
model for the same data is (0.000, 6.685) with median 0.794.

Several settings of the roughness penalty factor were ex-
plored. Its smoothing effect on the sensitivity map is demon-
strated in Fig. 9 for two settings of . Both plots show the same
horizontal slice located 0.118 mm superior to the bottom of the
array. Low values of led to a detailed spatial map. However,
this improved resolution tended to decrease generalization per-
formance across all channels. The attempted values of and
the corresponding prediction errors are shown for animal A in
Fig. 10. The minimal settings (from this discrete list) of were
0.1 and 0.5 for animals A and B, respectively. Despite the sim-
plicity of the spatial gradients involved in this roughness penalty

Fig. 9. Comparison of sensitivity maps generated using different roughness
penalties for the same data set. Both panels show the same horizontal slice lo-
cated at 0.118 mm superior to the bottom of the array. The left panel shows the
sensitivity map for a high roughness penalty �� � ��, and the right panel uses
a low roughness penalty �� � �����. Each map is scaled to its norm, and thus
represents the shape and amplitude for the unit norm electric field stimulus that
optimally excites the cortical channel.

Fig. 10. Tuning the roughness penalty �. Average prediction error (across
channel models and LOCO test sets) versus selected � settings. Since the
outputs were max-scaled, these errors values signify the ratio of error versus
the largest encountered rms value.

[(11)], the best settings of improved generalization perfor-
mance by 2.4% and 9.8% in rats A and B, respectively (% re-
duction in test error from the case across all channels
and LOCO test sets). This suggests that cortical areas have an
intrinsic limit on spatial resolution for microstimulation in thal-
amus. Letting the model capture more detailed field features
only leads to overfitting.

We note that the sensitivity maps for all cortical channels are
quite similar, but have qualitative features (such as the centers,
widths, and amplitudes of bumps and valleys) that show trends
according to recording location (see Fig. 11). For example, in
the third row of Fig. 11, the light bump in the top right of the
map appears to get brighter for increasingly anterior cortical
channels. We expect the maps to be mostly similar, since the
recording electrodes were so close to one another. The hori-
zontal span of the whole cortical array was only 0.6 mm.

IV. DISCUSSION

A. Generalization Ability

We have demonstrated that field-aware models of MiSt
can generalize to unencountered electric fields. These may
result from arbitrary stimulation configurations as long as the
spatial sampling of the training data is sufficiently rich. For
neuroprosthetic applications, this provides a systematic way
to select stimulation configurations likely to generate desired
responses without having to try each one first. In bipolar
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Fig. 11. Sensitivity maps for all 16 cortical channels in animal B, arranged by
recording site. The model parameter � � ��� was used in all models. Each plot
shows the same horizontal section with the same spatial and color scales as in
Fig. 9.

stimulations, the number of possible configurations already
reaches where is the number of electrodes
(120 for a 16 channel array). Of course, some educated guess-
work may narrow down the number of plausibly efficacious
pairs. However, for a higher number of simultaneously-stimu-
lating electrodes (SSE), the number of possible configurations
becomes so large that it is arguably prohibitive to sample
exhaustively. In order to capitalize on the full range of spatially
varied SSE patterns, a generalizable model is required. Here we
have reported a model that can be trained on a limited subset of
current input configurations yet performs reliably in predicting
responses to novel inputs. Electric field is what unites different
SSE configurations into a common space. Thus, by fitting
responses to electric fields, our method can accommodate new,
arbitrarily complex MiSt configurations. It is notable that the
field-aware and field-naive models had access to the same
adaptable nonlinearity [compare (3) and (9)], so prediction
improvement in the field-aware case is attributable to the lattice
of electric field sample points acting as a better feature set.

B. Sensitivity Maps as Functional Brain Mapping

For a given cortical recording, the sensitivity maps (e.g.,
Figs. 11 and 8) can be viewed as highlighting regions of most
efficacious input to the thalamocortical column. This can be
roughly interpreted as the cortical “receptive fields” of MiSt.
These maps could be interpreted anatomically if an image of
the implanted array (e.g., CT scan) were taken and used to
register them to the brain structures they occupy. Such a proce-
dure offers a means for obtaining higher-resolution functional
mapping of brain connections than mapping based on electrode
tip locations alone. This is naturally subject to the caveat that
we treat the tissue as a uniform conductive medium.

The static spatial model presented in this paper could also
provide a starting point for a dynamical model that captures both
spatial and temporal effects of MiSt. Thus, armed with a field-
aware model and knowledge of the somatotopic map of VPL [6],

we aim to stimulate thalamic inputs to cortex in specific patterns
to achieve more naturalistic modulation of S1.
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